首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
北斗卫星的姿态控制分为动态偏置、零偏置和连续动偏3种,不同类型卫星、不同姿态控制模式、不同时段下定轨精度不一致,影响了北斗系统的连续性。详细研究了北斗不同类型卫星在不同姿态控制模式下的最优定轨策略,并基于实测数据进行试验,结果表明,BeiDou-2 IGSO(inclined geosynchronous orbit)/MEO(medium earth orbit)卫星采用基于星地钟差约束下多星定轨方法和ECOM(extended CODE model)5参数模型相结合的方法定轨精度最优,零偏期间,用户等效距离误差值为2.08 m,全球激光评估轨道视向精度约为1 m;BeiDou-3 IGSO/MEO卫星采用常规多星定轨和ECOM 5参数模型相结合的方法定轨精度最优;连续动偏期间,用户等效距离误差值为1.22 m,全球激光评估轨道视向精度为0.23 m,与动偏期间精度一致;GEO(geostationary earth orbit)卫星在春秋分附近时段采用基于星地钟差约束下多星定轨方法和ECOM 9参数模型相结合的方法定轨精度最优,用户等效距离误差值为0.72 m。  相似文献   

2.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

3.
卫星帆板及本体受照情况变化复杂,导致卫星光压摄动力的变化难以准确模制,既是动力学定轨的最大误差源,也是定轨预报精度降低的主要原因。针对此问题,采用北斗地面系统的区域监测网数据,详细比较了3种主要的经验模型(T20模型、ECOM5参数模型、ECOM9参数模型)对不同卫星的适用性情况。结果显示,在春秋分前后,地球同步轨道(geosynchronous earth orbit,GEO)卫星使用ECOM9参数模型最好,其解算的卫星钟差与星地双向钟差的互差标准差优于2 ns;对于倾斜地球同步轨道(inclined geosynchronous satellite orbit,IGSO)卫星和中地球轨道(medium earth orbit,MEO)卫星,无论是在动偏期间还是姿态模式转换期间,T20模型表现出更好的适用性。不同于此前国内外学者的相关研究,试验表明,对BDS混合星座的不同类型卫星、同一卫星的不同时段,应采用不同的经验太阳光压模型,以获得更高的定轨和预报精度。  相似文献   

4.
LEO星载GPS双向滤波定轨研究   总被引:1,自引:1,他引:0  
介绍了目前常用的LEO(low Earth orbiter)星载GPS定轨方法,分析了LEO星载GPS双向滤波定轨方法与其他几种主要定轨方法的区别.从卫星运动方程和星载GPS非差定轨观测方程出发,给出了LEO星载GPS双向滤波定轨方法的原理,采用自行研制的定轨软件对两颗GRACE(gravity recovery and climate ex-periment)卫星进行了定轨试验,通过与JPL(Jet Propulsion Laboratory)轨道的对比及KBR(k-band rangingsystem)观测数据的外部检核发现:①双向滤波定轨技术不仅能显著提高单向滤波开始阶段的定轨精度,而且可以从整体上提高卫星的定轨精度;②LEO星载GPS双向滤波定轨方法切实可行,相应的星载GPS定轨软件对GRACE卫星定轨精度在径向、沿轨方向和法向优于5 cm.  相似文献   

5.
袁俊军 《北京测绘》2018,32(3):278-280
利用GRACE卫星2015年1月1日至7日的星载GPS观测数据,基于卫星简化动力学定轨方法和事后批处理定轨模式,利用24小时弧段进行精密定轨。采用多种手段进行评价定轨精度,通过分析,观测值定轨残差稳定在7mm,与德国地学中心(GFZ)发布的事后精密轨道在径向、切向、法向的RMS值分别是3cm,2cm,3cm,利用SLR检核轨道精度优于4cm。结果表明,使用简化动力学定轨可实现低轨卫星的cm级高精度定轨。  相似文献   

6.
基于自发自收测距的GEO卫星精密定轨   总被引:1,自引:0,他引:1  
对于基于伪距测量模式的GEO卫星定轨,需要星地时间同步和站问时间同步的支持,因此卫星钟差和接收机钟差的精度直接制约了GEO卫星的定轨精度.自发自收式测距的观测数据并不含有卫星钟差和接收机钟差信患,定轨解算中避免了钟差精度带来的影响,可以实现GEO卫星的精密定轨.此处采用GEO卫星的自发自收武测距数据进行精密定轨试验,分析和讨论了基于自发自收式测距的GEO卫星精密定轨策略,提出了卫星轨控后轨道快速恢复的定轨策略.试验结果表明:轨道的内符R方向精度为1.615 m,位置精度为11.642m,定轨残差为0.279m;轨道恢复1 h后的定轨位置精度优于60m,恢复6 h后的定轨位置精度优于15m,定轨残差在0.15 m左右.  相似文献   

7.
采用星载GPS双频观测数据,低轨卫星定轨的精度可以达到厘米级。采用GRACE A卫星的星载GPS观测数据,分别基于单频数据(C/A和L1)的半合组合观测量和双频数据的消电离层组合观测量,采用动力学低轨卫星定轨方法,解算了7d的GRACE A卫星轨道,解算结果与德国地学中心发布的快速科学轨道进行对比分析,并通过卫星激光测距观测数据进行检核。结果表明,通过半合组合观测量定轨得到的结果,在径向R、切向T、法向N方向的均方根误差平均值分别为7.9cm、20.1cm和5.5cm,三维定轨精度平均为22.8cm,利用卫星激光测距数据进行检核,残差平均值为-1.8cm,均方根误差为8.6cm。证明了采用单频观测数据进行定轨的可行性,并且定轨精度可以达到一般低轨卫星定轨精度的要求。  相似文献   

8.
冯来平  毛悦  宋小勇  孙碧娇 《测绘学报》2016,45(Z2):109-115
为提升区域地面监测站条件下北斗卫星定轨精度,面向日益丰富的北斗星载数据和即将实现的星间链路技术,提出了联合运用地面监测站数据、低轨卫星星载数据与星间链路数据的北斗卫星精密定轨方法。讨论了低轨卫星星载数据与星间链路数据增强对于导航卫星精密定轨的影响,重点从低轨卫星数量、轨位分布及星间链路等方面进行了仿真分析。结果表明:加入少量低轨卫星与区域监测站联合定轨即可显著提高导航卫星定轨精度约73%,钟差解算精度略有改进但不明显;同等数量且均匀分布的低轨星座,其轨位分布对联合定轨精度影响不大;加入星间链路数据可大幅提升导航卫星定轨精度,且改进效率高于低轨卫星。  相似文献   

9.
首先分析了GRACE-A、GRACE-B、FY3C 3颗低地球轨道(low earth orbit,LEO)卫星对于提升北斗卫星导航系统(BeiDou navigation satellite system,BDS)卫星和GPS卫星可见性的影响,其中BDS中圆地球轨道(medium earth orbit,MEO)卫星的提高最为显著,一重覆盖弧段提高了45.7%,四重覆盖弧段提高了10.7%,与GPS卫星相当。然后利用卫星位置精度衰减因子(satellite position dilution of precision,SPDOP)分析了LEO卫星对导航卫星定轨观测几何结构的增强作用。加入LEO卫星后,BDS地球静止轨道(geostationary earth orbit,GEO)卫星SPDOP值下降了49%;倾斜地球同步轨道(inclined geosynchronous orbit,IGSO)卫星SPDOP值下降了39.8%;MEO卫星SPDOP值下降了34.9%;GPS卫星SPDOP值下降了41.2%。最后利用7个区域监测站和3颗LEO卫星的实测数据分析了LEO卫星对导航卫星轨道精度的提升,GPS卫星轨道的外符合一维均方根(one-dimensional root mean square,1D RMS)由14.4 cm提高到10.2 cm,提高了29.1%;BDS的GEO卫星轨道重叠弧段1D RMS由359.8 cm提高到90.5 cm,提高了74.8%;IGSO卫星由175.6 cm提高到52.1 cm,提高了70.3%;MEO卫星由90.5 cm提高到30.4 cm,提高了66%。  相似文献   

10.
由于地基定轨系统的局限性,提出基于全球导航卫星系统(GNSS)的高轨卫星定轨方法,并设计实现了高轨卫星天基定轨仿真软件。结合高轨卫星天基定轨的特点和GNSS的建设现状,研究卫星可见性算法和星间观测模型,综合轨道积分和Kalman滤波方法的优点,提出确定高轨卫星轨道的积分滤波方法。仿真结果表明基于GNSS完成天基定轨增加了卫星的观测量,提高了定轨精度。最后在理论研究的基础上,自主开发了集STK、Matlab和Visual C++为一体的高轨卫星天基定轨仿真平台。为北斗系统应用于高轨卫星天基定轨提供了理论上的参考依据和模拟工具。  相似文献   

11.
由于重力场精化、大气探测、海洋测高等科学研究的需要,低轨卫星得到了迅速发展。精密轨道确定是低轨卫星科学任务顺利完成的前提。本文系统分析了基于星载GPS接收机双频P码非差观测值的低轨卫星定轨方法的原理及数学模型,并用CHAMP卫星的实测观测值对各种定轨方法进行了验算,以分析研究各种不同定轨方法的定轨精度。结果表明简化的动力学定轨精度较高,定轨精度在2dm左右;动力学定轨结果最差,在几m左右;而几何法及简化几何法定轨精度相当,约1m左右,定轨精度介于动力学及简化动力学定轨精度之间。  相似文献   

12.
北斗卫星导航系统(BeiDou satellite navigation system,BDS)目前暂未具有全球导航定位能力,卫星轨道的全程跟踪与测站的几何结构还不完善,影响了卫星轨道的测定精度。针对上述问题,根据动力学定轨的原理与方法,推导了多个全球导航卫星系统(global navigation satellite system,GNSS)联合定轨对参数求解精度的解析贡献量,并利用实测数据分析了BDS/GPS联合定轨对轨道和钟差求解精度的统计贡献量。结果表明,联合定轨对系统间公共参数求解精度的贡献显著,除地球静止轨道(geostationary orbit,GEO)卫星外,其余轨道和钟差求解精度均有显著提高。BDS/GPS联合定轨对BDS卫星轨道、卫星钟差均方根误差(root mean square,RMS)以及接收机钟差RMS的统计贡献量分别为36.21%、26.88%和20.88%,其中对可视卫星数较少的区域接收机钟差求解精度的贡献尤为显著,贡献量为45.95%。  相似文献   

13.
针对区域跟踪网不能覆盖导航卫星全弧段从而导致卫星定轨精度低的问题,简述了导航卫星和低轨卫星联合定轨模型,然后利用星地跟踪网观测数据同时确定了低轨卫星和导航卫星精密轨道,并根据实验结果详细分析了低轨卫星在联合定轨中所起到的作用。计算结果表明,引入低轨卫星之后,全球网和区域网定轨精度分别平均提高了20.0%和44.3%,区域网6h和24h的轨道预报精度分别优于10cm、13cm,利用星地跟踪网观测数据联合定轨方案是一种提高定轨精度并削弱对地面站依赖性的有效方法。  相似文献   

14.
地球静止轨道卫星(GEO)在北斗卫星导航系统(Compass)的卫星导航中具有特别重要的作用,除了利用导航系统自身的伪距相位以外,利用其他的测轨系统对其进行精密定轨有着重要的意义。利用国家授时中心的转发式测轨网对Compass的GEO卫星进行观测,获取转发式测轨数据,利用该数据对Compass的GEO卫星进行精密定轨分析。分别从观测数据的观测精度,定轨残差以及轨道重叠误差等方面分析GEO卫星的定轨精度。  相似文献   

15.
随着北斗卫星导航系统(BeiDou navigation satellite system,BDS)的建设与运行,低轨卫星开始搭载GPS/BDS双系统接收机以实现卫星轨道确定.利用风云三号C(FengYun-3C,FY3C)卫星星载GPS/BDS双频伪距与载波相位观测数据,设置4种仿真试验方案,分别进行星载GPS/BDS在轨实时定轨数据处理,重点进行BDS观测数据对伪距实时定轨和载波相位实时定轨的精度影响分析和算法耗时分析.结果表明,采用伪距观测值,可获得1.0m的位置精度和1.0 mm/s的速度精度;采用载波相位观测值,可获得0.3 m的位置精度和0.3 mm/s的速度精度,且引入BDS观测值后,伪距实时定轨精度降低,相位实时定轨精度有所改善.  相似文献   

16.
厘米级精密卫星轨道是完成低轨卫星承担的科研、商业等任务的必须前提,其中事后轨道精度评定是低轨卫星精密定轨任务中重要一环。依据观测条件和卫星搭载设备等情况,选择合适的精度评定方法有利于客观准确的评估定轨结果。本文以GRACE卫星为例,讨论了内外精度评估方法,得到有益结论,为我国开展后续国产卫星精密定轨任务具有借鉴意义。   相似文献   

17.
高精度的电离层模型对于提高导航卫星系统的定位精度具有重要意义。低轨卫星的快速发展为建立高精度的电离层模型提供了新的契机。基于仿真数据模拟获得2017年1月1日—30日LEO(low earth orbit)和GNSS(global navigation satellite system)卫星观测数据,星座类型包括60、96、192和288颗卫星,以非洲区域为例,利用该数据研究GNSS和LEO卫星穿刺点的覆盖情况和联合建模精度。结果表明:加入LEO卫星后,穿刺点分布改善明显,能够大幅度提高穿刺点密度;单颗低轨卫星穿刺点的范围比GNSS卫星大,LEO卫星的高度角和方位角变化明显;随着低轨卫星数量的增加,融合建模的精度也随之提高;在12:00时东经30°不同纬度范围内,单GNSS建模和GNSS+288 LEO建模差值最大为-1.6 TECU(total electron content unit);随着建模时长的增加,融合建模结果和单GNSS结果差值逐渐变小。  相似文献   

18.
首次搭载GPS/BDS双模接收机全球导航卫星掩星探测仪(GNOS)的风云三号C星于2013年9月23日的成功发射,为研究低轨卫星对BDS定轨增强提供了便利。本文首先对低轨卫星GNOS搭载的GPS/BDS双模接收机的观测数据进行统计,并分析了伪距测量精度。然后在全球测站、区域测站两种布局情况下,对无GNOS的BDS单系统定轨、无GNOS的GPS/BDS双系统定轨、有GNOS的BDS单系统定轨增强、有GNOS的GPS/BDS双系统定轨增强4种方案进行北斗轨道及钟差比较分析。结果表明,GNOS对北斗卫星轨道增强在全球测站下,GEO卫星切向精度提升最为显著,提升程度达60%,其次是法向和其他类型卫星切向,部分弧段个别GEO卫星径向精度稍有下降。双系统定轨增强中可视弧段钟差重叠精度RMS值有0.1ns量级改善。7个国内测站区域监测网的定轨试验中对轨道进行了预报,结果表明GNOS对北斗GEO卫星轨道预报精度切向提升达85%,其余方向及卫星有较大改善,平均21.7%。可视弧段钟差重叠精度RMS值有0.5ns量级改善。  相似文献   

19.
北斗三号卫星导航系统(BeiDou-3 navigation satellite system,BDS-3)在BDS-2基础上,设计实现了高速宽带星间链路网络,以期实现导航和通信的一体化建设,并为卫星自主定轨(autonomous orbit determina-tion,AOD)技术的实现积累宝贵的实测数据.首先,利...  相似文献   

20.
精确标定导航卫星发射天线相位中心对于高精度GNSS(globalnavigationsatellitesystem)数据处理十分重要,对于低轨卫星(lowearthorbit,LEO)精密定轨更是如此。本文以GPS为例,首先探讨了一种基于LEO简化动力学精密定轨残差建模的方法,对导航卫星发射天线相位中心变化(phasecentervariation,PCV)进行标定,与IGS08_1745.atx(internationalGNSSservice,IGS)的PCV比较结果表明,本文所得PCV在天底角低于14°部分与IGS的PCV差异约1mm,并且有效地将天底角(nadirangle)拓展至17°;最后采用多种方案讨论了导航卫星PCV对JASON2精密定轨的影响。结果表明,导航卫星PCV可导致1~2cm的定轨误差。其中利用本文所得PCV可实现3DRMS约3cm、径向约1cm的定轨精度,与采用IGS的PCV定轨精度相当,本方法可为北斗卫星发射天线相位中心变化的标定提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号