首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
A total of 118 of agricultural soil and 43 of vegetable samples were collected from Dongguan City, Guangdong, China. The spatial distribution, sources, accumulation characteristics and potential risk of heavy metals in the agricultural soils and vegetables were depicted in details by three different approaches, including total contents of eight metal elements in soils and vegetables, GIS maps and multivariate analysis of heavy metals in soils in the study. The results show that there are higher accumulation of heavy metals such as Cu, Zn, Ni, Pb, Cd and Hg in agricultural soils, and the contents of Pb (65.38 mg kg?1) and Hg (0.24 mg kg?1) are 1.82 and 2.82 times of the background contents of the corresponding heavy metals in soils of Guangdong Province, respectively. There are about 3.4% of Cu, 5.9% of Ni, 1.7% of Cd and 28% of Hg in all collected soil samples from all investigated sites which have overran the contents for heavy metals of the China Environmental Quality Standard for Soils (GB15618-1995, Grade Ⅱ). The pollution characteristics of multi-metals in soils are mainly reflected by Hg. There are different sources to eight metal elements in soils, Cu, Zn, Ni, Cr and As are predominantly derived from parent materials, and Pb, Hg and Cd are affected by anthropogenic activities. The spatial distribution shows that the Cu, Zn, Ni, Cr, Pb, As and Hg contents of agricultural soils are high in the west and low in the east, and Cd contents are high in the northwest, southeast and low in the southwest in Dongguan. The ratios of vegetable samples which Ni, Pb and As concentrations higher than the Maximum Levels of Contaminants in Foods (GB2762-2005) are 4.7%, 16.3% and 48.8%, respectively. The order of bio-concentration factors (BCF) of heavy metals in vegetables is Cd > Zn > Cu > As > Ni > Hg > Cr > Pb. It is necessary to focus on potential risk of heavy metals for food safety and human’s health from agricultural soils and vegetables in Dongguan City, Guangdong Province.  相似文献   

2.
湘江中下游农田土壤和蔬菜的重金属污染   总被引:11,自引:0,他引:11  
A total of 219 agricultural soil and 48 vegetable samples were collected from the midstream and downstream of the Xiangjiang River(the Hengyang-Changsha section)in Hunan Province.The accumulation characteristics,spatial distribution and potential risk of heavy metals in the agricultural soils and vegetables were depicted.There are higher accumulations of heavy metals such as As,Cd,Cu,Ni,Pb and Zn in agricultural soils,and the contents of Cd(2.44 mg kg^-1 ),Pb(65.00 mg kg^-1 )and Zn(144.13 mg kg^-1 )are 7.97,3.69 and 1.63 times the corresponding background contents in soils of Hunan Province,respectively. 13.2%of As,68.5%of Cd,2.7%of Cu,2.7%of Ni,8.7%of Pb and 15.1%of Zn in soil samples from the investigated sites exceeded the maximum allowable heavy metal contents in the China Environmental Quality Standard for Soils(GB15618-1995,Grade Ⅱ).The pollution characteristics of multi-metals in soils are mainly due to Cd.The contents of As,Cd,Cu,Pb and Zn in vegetable soils are significantly higher than the contents in paddy soils.95.8%, 68.8%,10.4%and 95.8%of vegetable samples exceeded the Maximum Levels of Contaminants in Foods(GB2762-2005)for As,Cd,Ni and Pb concentrations,respectively.There are significantly positive correlations between the concentrations of Cd,Pb and Zn in vegetables and the concentrations in the corresponding vegetable soils(p〈0.01).It is very necessary to focus on the potential risk of heavy metals for food safety and human health in agricultural soils and vegetables in the midstream and downstream of the Xiangjiang River,Hunan Province of China.  相似文献   

3.
上海市崇明岛农田土壤重金属的环境质量评价(英文)   总被引:1,自引:0,他引:1  
The environmental quality of heavy metals (Pb,Cd,Cr,As,Hg) in agricultural surface soil of Chongming Island was assessed by national,local and professional standards based on a large scale investigation,in which 28 samples from vegetable plots,65 samples from paddy fields and 9 samples from watermelon fields were collected from whole island area. Results showed that the average concentration of Pb,Cd,Cr,As and Hg was 21.6 mg·kg-1,0.176 mg·kg-1,69.4 mg·kg-1,9.209 mg·kg-1 and 0.128 mg·kg-1,respectively. Compared with the background value of Shanghai City soil,except for Pb and Cr,all the other heavy metals average concentrations in Chongming Island agricultural surface soil exceeded their corresponding natural-background values. The concentrations of Cd,As and Hg were 33.0%,1.2% and 26.3% higher than the background value of Shanghai City,respectively. In addition,inverse distance interpolation (IDW) tool of GIS was also applied to study the spatial variation of heavy metals. The results indicated that most of agricultural soil quality was good,and the ratio of ecological,good soil,certified soil and disqualified soil were 1.26%,97.1%,1.47% and 0.12%,respectively. About 10.1%,85.7%,27.0%,55.4% and 55.2% soil samples exceeded the Pb,Cd,Cr,As and Hg background value of Shanghai City,respectively. Among these three land use type soils,vegetable soil was most seriously polluted by heavy metals,which is probably related to the over-application of pesticides. The annual deposition fluxes of Pb,Cd,As and Hg were 7736 μg.m-2.a-1,208 μg.m-2.a-1,2238 μg.m-2.a-1 and 52.8 μg.m-2.a-1,respectively. Crop straw burning was the important source of heavy metals of atmospheric deposition,and atmospheric deposition contributed a lot to heavy metals in agricultural soil in Chongming Island.  相似文献   

4.
With rapid economic and social development, soil contamination arising from heavy metals has become a serious problem in many parts of China. We collected a total of 445 samples(0–20 cm) at the nodes of a 2 km×2 km grid in surface soils of Rizhao city, and analyzed sources and risk pattern of 10 heavy metals(As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn). The combination of Multivariate statistics analysis and Geostatistical methods was applied to identify the sources and hazardous risk of heavy metals in soils. The result indicated that Cr, Ni, Co, Mn, Cu, and As were mainly controlled by parent materials and came from natural sources. Cd and Hg originated from anthropogenic sources. Pb and Zn, belonging to different groups in multivariate analysis, were associated with joint effect of parent materials and human inputs. Ordinary Kriging and Indicator Kriging suggested that single element and elements association from the same principal components had similar spatial distribution. Through comprehensive assessment on all elements, we also found the high risk areas were located in the populated urban areas and western study area, which could be attributed to the higher geological background in the western part and strong human interference in the eastern part.  相似文献   

5.
The concentrations of Cd, Cu, Pb, Zn, Ni and Fe were determined in the surface sediment and marine gastropod Nerita lineata collected in May 2005 from the intertidal zone of Dumai, Sumatera, Indonesia and Johor, Peninsular Malaysia. The results showed that metal concentrations in sediment and the soft tissue of N. lineata varied at different sampling stations. Mean heavy metal concentrations were 0. 92 μg/g(Cd) ;6.40 μg/g(Cu) ;32.77 μg/g(Pb) ;54.41μg/g(Zn) ;11.56 μg/g(Ni) and 2.97%(Fe) in sediment from Dumai and 1.15 μg(Cd) ;26.73 μg/g(Cu) ;53.45μg/g(Pb) ;130.77 μg/g(Zn) ;20.79 μg/g( Ni ) and 2.72% (Fe) in sediment from Johor. Concentrations of metals in gastropod N. lineata were 0.71 μg/g(Cd) ;15.16 μg(Cu) ;9.35 μg/g(Pb) ;94.69 μg/g(Zn) ;5.08 μg/g(Ni) and 397.97 μg/g(Fe) in samples from Dumai and 1.24 μg(Cd) ;18.02 μg/g(Cu) ;19.75 μg/g(Pb) ;95.09 μg/g(Zn) ;5.57 μg/g ( Ni ) and 473. 56 μg/g (Fe) in samples from Johor. Although they were not statistically significant (p >0.05), heavy metal concentrations in N. lineata were correlated with the concentrations of respective metals in sediment in both samples from Dumai and Johor. In general, samples of sediment and gastropod from Johor accumulated significantly higher heavy metal concentrations when compared to samples from Dumai(p < 0. 05). Higher concentrations of metals were recorded in samples collected from the stations close to the industrial and anthropogenic activities in both Dumai and Johor areas. However, most of the concentrations were still comparable to the previous reported studies from other geographical areas.  相似文献   

6.
Groundwater is the most appropriate and widely used source of drinking water,which is increasingly threatened by pollution from industrial and agricultural activities.To check the severity of the problem,156 groundwater samples were collected from various depths(60-110 ft) of 52 different localities in Faisalabad city,the third largest metropolis in Pakistan,and analyzed for the metals(Zn,Cu,Cd,Ni,Pb,Mn and Fe) concentration in 2009.Quantification was done by using Flame Atomic Absorption Spectrophotometer technique and the results were compared with WHO standards for drinking water quality.Results showed that the levels of Cu,Mn and Fe were below the WHO standards while the concentrations of Zn,Cd,Ni and Pb were above the recommended levels of safe drinking water.Correlation analysis among the occurrence of these heavy metals revealed a highly significant and positive correlation of Mn with Zn and Fe.A significant and positive correlation of Cd was also found with Cu and groundwater depth showing that there is strong association between Cu-Cd pair and that the Cd concentration varies with depth of groundwater in the study area.Regional patterns of heavy metals occurrence were mapped using Geographical Information System(GIS) for the identification and demarcation of risk areas.The concentration maps may be used by policymakers of the city to mitigate groundwater pollution.  相似文献   

7.
The study was conducted to quantify the concentration and distribution of metals (Cd, Zn, Ni, Cu, Pb, and Fe) in the surface sediments and to assess the status of metal contaminations in the Klang River, Malaysia. The concentrations of metals (μg∕g, Fe%, dry weight) were as follows: 0.57-2.19 μg∕g Cd; 31.89-272.33 μg∕g Zn; 5.96-24.47 μg∕g Ni; 10.57-52.87 μg∕g Cu; 24.23-64.11 μg∕g Pb and 1.56%-3.03% Fe. Sequential extraction technique (SET) showed that mean anthropogenic portions of metals were in the order of Zn (60.22%), Cu (56.01%), Cd (45.63%), Ni (42.08%), Pb (33.22%) and Fe (10.26%). The highest concentrations of metals ( p<0.05) were found in the stations located close to industrial parks and highly populated areas. The results of the present study showed that the effectiveness of total organic carbon (TOC) contents in controlling the distribution and enrichment of metals was a more important factor compared to grain size. The study also indicated that the control of metals pollution from direct influx of domestic wastes and insufficiently treated industrial wastes in the Klang River was an important and desirable way to minimize the detrimental effects of metals.  相似文献   

8.
澜沧江-湄公河重金属污染评价及大坝影响(英文)   总被引:1,自引:1,他引:0  
The resource development and changes of hydrological regime,sediment and water quality in the Mekong River basin have attracted great attentions.This research aimed to enhance the study on transboundary pollution of heavy metals in this international river.In this study,eight sampling sites were selected to collect the bed sand samples along the mainstream of the Mekong River.In addition,the contents of 5 heavy metal elements and their spatial variability along the mainstream of the river were analyzed.The geoaccumulation index(I geo) and potential ecological risk analysis were employed to assess heavy metal pollution status in the mainstream of the Mekong River.The results show that the average content of the heavy metal elements Zn is 91.43 mg/kg,Pb is 41.85 mg/kg,and As is 21.84 mg/kg in the bed sands of the Upper Mekong River,which are higher than those(Zn 68.17 mg/kg,Pb 28.22 mg/kg,As 14.97 mg/kg) in the Lower Mekong.The average content of Cr in the Lower Mekong is 418.86 mg/kg,higher than that in the Upper Mekong(42.19 mg/kg).Luang Prabang has a very high Cr concentration with 762.93 mg/kg and Pakse with 422.90 mg/kg.The concentration of Cu in all of the 8 sampling sites is similar,except for in Jiajiu with 11.70 mg/kg and Jiebei with 7.00 mg/kg.The results of the geoaccumulation index reveal that contaminations caused by Zn and Pb while Pb and As are more than those by Zn in Upper Mekong.Cr is the primary pollutant in the Lower Mekong,especially at Luang Prabang and Pakse.Slight pollution with As also occurs in Pakse.The potential ecological risk index indicates that the potential ecological risk of heavy metals in the mainstream of the Mekong River is low.We argue that the pollution of water quality and contamination of heavy metals in bed sediment caused by mining of mineral resources or geochemical background values in the Mekong is not transmitted from the Upper to the Lower Mekong because of the reservoir sedimentation and dilution along the river.  相似文献   

9.
Three kinds of tundra plant samples including Dicranum angustum(a type of boreal bryophyte),Puccinellia phryganodes(a type of fringy plant),Salix polaris(a type of vascular plant) and surface soil were samples in 200 at Ny-lesund of the Arctic.The levels of eight heavy metal elements(Hg,Pb,Cd,Cu,Zn,Ni,Fe and Mn) and three metal-like elements(As,Se,Sr) in the plant and soil samples of the areas within previous coal mining activities are significantly higher than those of other areas.The relative accumulation of these elements in these tundra plant samples is consistent with the one in the soil samples,especially in the areas affected by previous coal-mining activities.Thus,the pollution is apparently from local coal mining activity.Dicranum angustum has the highest concentrations among those elements,and it can be a good bio-indicator for heavy metal pollution in Ny-lesund.Though Ny-lesund is less polluted by heavy metal than nearby Northern European human living areas,but much more than the tundras of the Alaska,Greenland and the Antarctic.  相似文献   

10.
The distribution and concentrations of Cd, Cu, Pb and Zn were determined in the gills and remaining soft tissues of Perna viridis collected from 12 geographical sites ( 10 from the west and 2 from the east coastal waters) of Peninsular Malaysia. All samples showed that the levels of Cd, Pb and Zn were generally higher in the gill than those in the remaining soft tissues. These results could be due to the fact that gills are the first organ of metal accumulation and larger surface area with mucus sheets in the organ. Since the mussel gill is a better accumulator of Cd, Pb and Zn of ambient seawater than remaining soft tissue, it is a potential indicator of ambient levels of dissolved metals in the ambient seawater. However, further validations based on laboratory conditions are needed.  相似文献   

11.
东莞市农田土壤和蔬菜重金属的含量特征分析   总被引:28,自引:1,他引:27  
从东莞市采集118 个农田土壤样品和43 个蔬菜样品, 测试其中Cu、Zn、Ni、Cr、Pb、 Cd、As 和Hg 等8 种重金属元素的含量, 并结合GIS 制图和数据统计, 对农田土壤中重金属 的空间分布和来源、土壤和蔬菜中重金属的富集特征及其潜在风险进行了分析。结果表明, 农田土壤中Cu、Zn、Ni、Pb、Cd 和Hg 等元素含量均高于相应元素的广东省土壤背景值, 其中, Pb (65.38 mg kg-1) 和Hg (0.24 mg kg-1) 含量分别为其对应背景值的1.82 和2.82 倍。与我国《土壤环境质量标准》中II 级标准(pH < 6.5) 相比, 土壤中Cu、Ni、Cd 和Hg 含量样本超标率分别为3.4%、5.9%、1.7%和28%, 表现为以Hg 为主的多种重金属共同污染。土壤 中8 种重金属中Cu、Zn、Ni、Cr 和As 等元素主要来源于成土母质, Pb、Hg 和Cd 等元素主要与人类活动有关。空间分布上, Cu、Zn、Ni、Cr、Pb、As 和Hg 等7 种重金属含量呈现出西部高、东部低的特点, Cd 含量在西北部和东南部较高, 西南部较低。与《食品中污染物限量》(GB2762-2005) 等相关标准比较, 蔬菜中Ni、Pb 和As 含量的样本超标率分别为4.7%、16.3%和48.8%。蔬菜中重金属富集系数的顺序为: Cd > Zn > Cu > As > Ni > Hg > Cr > Pb。  相似文献   

12.
A total of 219 agricultural soil and 48 vegetable samples were collected from the midstream and downstream of the Xiangjiang River (the Hengyang–Changsha section) in Hunan Province. The accumulation characteristics, spatial distribution and potential risk of heavy metals in the agricultural soils and vegetables were depicted. There are higher accu-mulations of heavy metals such as As, Cd, Cu, Ni, Pb and Zn in agricultural soils, and the contents of Cd (2.44 mg kg-1), Pb (65.00 mg kg-1) and Zn (144.13 mg kg-1) are 7.97, 3.69 and 1.63 times the corresponding background contents in soils of Hunan Province, respectively. 13.2% of As, 68.5% of Cd, 2.7% of Cu, 2.7% of Ni, 8.7% of Pb and 15.1% of Zn in soil sam-ples from the investigated sites exceeded the maximum allowable heavy metal contents in the China Environmental Quality Standard for Soils (GB15618-1995, Grade II). The pollution characteristics of multi-metals in soils are mainly due to Cd. The contents of As, Cd, Cu, Pb and Zn in vegetable soils are significantly higher than the contents in paddy soils. 95.8%, 68.8%, 10.4% and 95.8% of vegetable samples exceeded the Maximum Levels of Contami-nants in Foods (GB2762-2005) for As, Cd, Ni and Pb concentrations, respectively. There are significantly positive correlations between the concentrations of Cd, Pb and Zn in vegetables and the concentrations in the corresponding vegetable soils (p<0.01). It is very necessary to focus on the potential risk of heavy metals for food safety and human health in agricultural soils and vegetables in the midstream and downstream of the Xiangjiang River, Hunan Province of China.  相似文献   

13.
湘江中下游农田土壤和蔬菜的重金属污染   总被引:70,自引:3,他引:67  
从湖南省湘江中下游衡阳-长沙段沿岸采集219 个农田土壤样品和48 个蔬菜样品, 测 试其中As、Cd、Cr、Cu、Ni、Pb、Zn 等7 种重金属元素的含量, 并结合GIS 作图与数据统 计, 对农田土壤中重金属空间分布、土壤和蔬菜中重金属富集特征以及其潜在风险进行分析。 结果表明, 农田土壤中As、Cd、Cu、Ni、Pb 和Zn 含量均大于湖南省相应土壤重金属含量背 景值, Cd (2.44 mg kg-1)、Pb (65.00 mg kg-1)、Zn (144.13 mg kg-1) 含量分别超标7.97、3.69 和 1.63 倍。与我国《土壤环境质量标准》(GB15618-1995) 中II 级标准(pH 6.5~7.5) 比较, 土壤 As、Cd、Cu、Ni、Pb 和Zn 含量的超标率分别为13.2%、68.5%、2.7%、2.7%、8.7%和 15.1%, 表现为以Cd 为主的多种重金属混合污染。菜地土壤中As、Cd、Cu、Pb 和Zn 的含 量( 几何均值) 分别高于水稻土As、Cd、Cu、Pb 和Zn 含量。与《食品中污染物限量》 (GB2762-2005) 等标准比较, 蔬菜As、Cd、Ni、Pb 含量的样本超标率分别为95.8%、68.8%、 10.4%和95.8%; 蔬菜Cd、Pb、Zn 含量与相应土壤的Cd、Pb、Zn 含量存在极显著的相关性 (P < 0.01)。湘江中下游的农田土壤和蔬菜中重金属污染的潜在风险值得关注。  相似文献   

14.
日照市土壤重金属来源解析及环境风险评价   总被引:66,自引:3,他引:63  
选择日照市的东港区和岚山区为研究区,采集了445个0~20 cm表层土壤样品,并测定了10种重金属元素的含量;采用多元统计和地统计分析,揭示了研究区土壤重金属污染的主要来源以及与土地利用、成土母质之间的关系,绘制了重金属的环境风险概率的空间分布图.结果表明:①As、Co、Cr和Cu的平均值低于山东省东部地区土壤背景值,Cd、Hg、Mn、Ni、Pb和Zn的平均值高于背景值,尤其是Cd、Hg的含量分别为背景值的1.85和1.38倍,土壤中重金属累积较为明显.②10种元素可被辩识出4个主成分(PCs),PC1 (Co、Cr、Mn、Ni和Zn)和PC3 (As、Cu)为自然源因子,PC2 (Cd、Pb)为工农业及交通源因子,PC4(Hg)为工业源因子;其中Pb、Zn在PC1和PC3上均有较大载荷,受地质背景和人类活动的共同控制.③Cd、Hg含量在不同的覆被类型有显著差异,在城镇建设用地的含量最高;Co、Cr、Cu、Mn和Ni在花岗岩和变质岩母质的含量高,与冲积与海积物母质有较大差异.④来自于同一主成分的元素及元素组合的环境风险空间格局与相应主成分插值结果基本一致,所有重金属综合环境风险的高值区在西部和东部呈点状分布,主要是由西部的高地质背景和东部的强烈人为干扰的综合作用造成的.  相似文献   

15.
施用不同畜禽粪便土壤剖面中重金属分布特征   总被引:8,自引:0,他引:8  
针对不同粪便集中施用情况, 选取禹城市3 个畜禽养殖区, 通过采集不同旱地农田土壤剖面样品, 研究典型重金属元素随粪便施用程度的变化、土壤剖面中重金属垂直分布特征以及施用不同畜禽粪便土壤剖面中重金属分布的差异。结果发现,长期施用畜禽粪便土壤剖面中重金属Cu、Zn、Pb、Cr、As的含量要高于未施用畜禽粪便的对照土壤剖面, 其中Cu、Zn 超过对照组较大;偶尔施用畜禽粪便土壤剖面Cu、Zn、Pb、Cr、As 的含量低于长期施用畜禽粪便土壤剖面, 且与未施用畜禽粪便的对照土壤剖面相差不大。牛粪集中施用区土壤剖面中Cu、Pb、Cr、Cd、Ni 等重金属存在较为明显的淋溶下移性, Hg、As两元素存在较为明显的表层或亚表层聚集现象;猪粪集中施用区土壤剖面各重金属除Cr、Ni 外, 都显示出较为明显的表层或亚表层聚集现象;鸡粪集中施用区的土壤剖面Cu、Pb、Cd、Cr、Ni 存在一定的淋溶下移性, 而Zn、Hg、As等3 种元素存在显著表层亚表层聚集现象。长期施用不同畜禽粪便的不同土壤剖面Cr、Ni、Cd、Pb 等含量变化差异明显, 而As、Hg差异性不显著;施牛粪与施鸡粪剖面中的Zn, 施猪粪与施鸡粪剖面中的Cu差异也不显著。  相似文献   

16.
烟台海岸带土壤重金属定量源解析及空间预测   总被引:5,自引:0,他引:5  
吕建树 《地理学报》2021,76(3):713-725
定量解析土壤重金属污染来源并绘制空间分布图是土壤重金属调查评价的核心,可为区域土壤环境管理和修复提供科学参考。以中国北方名优农产品生产基地烟台海岸带为研究区,系统开展表层土壤样品采集和重金属分析测试;利用正定矩阵因子分解定量解析土壤重金属的来源贡献;基于独立成分分析和序贯高斯模拟构建多元地统计模拟技术,实现土壤重金属的空间预测及潜在污染区域划定。结果表明:① 研究区表层土壤中 As、Co、Cr、Mn和Ni主要为自然来源,且空间分布受成土母质的控制;② 工业和交通排放是土壤中Cd、Pb和Zn的重要来源,三者在金、铜矿的尾矿区以及烟台市区呈现出污染热点;③ 土壤中Cu主要来自铜基杀菌剂和有机肥施用等农业活动,高值区主要分布在果园土壤;④ 土壤中Hg主要来源于煤炭燃烧和混汞法炼金所排放Hg的大气沉降,高值区主要分布在金矿以及龙口、蓬莱市区周边;⑤ Cu、Hg和Cd的潜在污染区域面积占研究区总面积的37.5%、14.3%和8.6%,应给予重点关注。  相似文献   

17.
山东省广饶县土壤重金属来源、分布及生态风险   总被引:2,自引:0,他引:2  
周旭  吕建树 《地理研究》2019,38(2):414-426
选取山东省广饶县作为研究区,采集300个表层土壤样品(0~20 cm),测定As、Cd、Co、Cr、Cu、Hg、Mn、Ni、Pb和Zn等10种重金属含量;运用多元统计和地统计分析方法揭示广饶县土壤重金属元素的来源与空间分布特征,最后利用H?kanson潜在生态风险指数法评价重金属的潜在生态风险。结果表明:① 研究区土壤中Co和Pb的平均值低于山东省背景值,其他8种元素的平均值均超过山东省背景值;特别是Cd和Hg的平均含量分别达到山东省背景值的1.86倍和2.50倍,说明在土壤中存在明显的富集。② As、Co、Cr、Cu、Mn、Ni和Zn为自然源,受成土母质控制;Hg为人为源,主要来源于煤炭燃烧和工业排放;Cd和Pb受自然和人为因素共同控制。③ 成土母质控制着As、Cd、 Co、Cr、Cu、Mn、Ni、Pb和Zn的基本分布格局,不同土地利用类型的土壤Hg含量差别较明显,其高值区集中在城镇建设用地。④ 总体上,研究区为中等生态风险的偏高水平,其中Cd和Hg分别为中等和较高生态风险,其余8种元素处于低生态风险。  相似文献   

18.
北京市小麦籽粒的重金属含量及其健康风险分析   总被引:7,自引:3,他引:4  
为评价北京市小麦重金属含量及其健康风险,采集北京市现有小麦种植区土壤和小麦籽粒对应样品68份,分析其重金属含量,并估算消费导致重金属摄入量。结果表明:北京市麦地土壤重金属As、Cd、Cr、Cu、Ni、Pb和Zn的平均值分别为7.46、0.165、37.8、20.3、24.2、14.3和70.1mg/kg,处于比较清洁水平。这说明小麦种植这种土地利用方式并不会导致土壤重金属升高。小麦籽粒中重金属含量,除Cr与食品卫生标准限值没有显著性差异外,其他元素均显著低于相应标准限值。普通人群通过小麦制品消费,As、Cd、Cr、Cu、Ni、Pb和Zn的摄入量分别为0.005、0.004、0.136、0.994、0.041、0.024、4.75mg/人 · d。北京小麦种植的主要4个区中,顺义产小麦的Cr、Cu、Ni和Pb导致的重金属摄入量高于其他3个区,房山产小麦导致的重金属摄入量最低。对于普通人群而言,通过小麦和蔬菜摄入重金属没有明显风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号