首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The characteristics and formation mechanism of calcite cements in the tight sandstone of the Jurassic Lianggaoshan Formation in the northeastern Central Sichuan Basin were analysed using petrographic and isotopic techniques. In the tight sandstone of the Lianggaoshan Formation, cements are mostly calcite and occur as poikilitic, pore-filling, fracture-filling and replacement of clastic particles. Contents of Al, Si, Fe and Mn in the poikilitic calcites are significantly less than that in the dissolution pore-filling and metasomatic calcites. Three stages (early, middle and late) of authigenic calcites correspond to temperature ranges of <60, 60–100 and ≥100?°C, respectively, with most calcite cements formed under lower temperature (<100?°C) conditions. The δ18O values of the early–middle authigenic calcites are in equilibrium with connate water, and the δ18O values of late calcites are depleted in 18O indicating equilibrium at higher temperatures. The early authigenic calcites precipitated in a relatively open system associated with CO2 from bacterial fermentation at an immature to low-mature stage, and a Ca2+- and alkaline-rich environment owing to hydration–hydrolysis and dissolution of silicate minerals during phase A of eodiagenesis. The middle–late authigenic calcites precipitated in a relatively closed system with CO2 from decarboxylation of organic acids and Ca2+ from dissolution of silicate minerals and transformation of clay minerals during phase B of eodiagenesis to mesodiagenesis. Calcite cements mainly occur in the medium and fine sandstones of sand flats and beach bars. Authigenic calcite dissolution is extremely weak, and calcite cementation is pore-space destructive.  相似文献   

2.
Early-diagenetic cementation of tropical carbonates results from the combination of numerous physico-chemical and biological processes. In the marine phreatic environment it represents an essential mechanism for the development and stabilization of carbonate platforms. However, diagenetic cements that developed early in the marine phreatic environment are likely to become obliterated during later stages of meteoric or burial diagenesis. When lithified sediment samples are studied, this complicates the recognition of processes involved in early cementation, and their geological implications. In this contribution, a petrographic microfacies analysis of Holocene Halimeda segments collected on a coral island in the Spermonde Archipelago, Indonesia, is presented. Through electron microscopical analyses of polished samples, this study shows that segments are characterized by intragranular cementation of fibrous aragonite, equant High-Mg calcite (3.9 to 7.2 Mol% Mg), bladed Low-Mg calcite (0.4 to 1.0 Mol% Mg) and mini-micritic Low-Mg calcite (3.2 to 3.3 Mol% Mg). The co-existence and consecutive development of fibrous aragonite and equant High-Mg calcite results initially from the flow of oversaturated seawater along the aragonite template of the Halimeda skeleton, followed by an adjustment of cement mineralogy towards High-Mg calcite as a result of reduced permeability and fluid flow rates in the pores. Growth of bladed Low-Mg calcite cements on top of etched substrates of equant High-Mg calcite is explained by shifts in pore water pH and alkalinity through microbial sulphate reduction. Microbial activity appears to be the main trigger for the precipitation of mini-micritic Low-Mg calcite as well, based on the presumable detection of an extracellular polymeric matrix during an early stage of mini-micrite Low-Mg calcite cement precipitation. Radiocarbon analyses of five Halimeda segments furthermore indicate that virtually complete intragranular cementation in the marine phreatic environment with thermodynamically/kinetically controlled aragonite and High-Mg calcite takes place in about 100 years. Collectively, this study shows that early-diagenetic cements are highly diverse and provides new quantitative constraints on the rate of diagenetic cementation in tropical carbonate factories.  相似文献   

3.
The Callovian-Oxfordian (COx) clayey unit is being studied in the Eastern part of the Paris Basin at depths between 400 and 500 m depth to assess of its suitability for nuclear waste disposal. The present study combines new mineralogical and isotopic data to describe the sedimentary history of the COx unit. Petrologic study provided evidence of the following diagenetic mineral sequence: (1) framboidal pyrite and micritic calcite, (2) iron-rich euhedral carbonates (ankerite, sideroplesite) and glauconite (3) limpid calcite and dolomite and celestite infilling residual porosity in bioclasts and cracks, (4) chalcedony, (5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ34S (−38‰ to +34.5‰), providing evidence of bacterial sulphate reduction processes in changing sedimentation conditions. The most negative values (−38‰ to −22‰), measured in the lower part of the COx unit indicate precipitation of pyrite in a marine environment with a continuous sulphate supply. The most positive pyrite δ34S values (−14‰ up to +34.5‰) in the upper part of the COx unit indicate pyrite precipitation in a closed system. Celestite δ34S values reflect the last evolutionary stage of the system when bacterial activity ended; however its deposition cannot be possible without sulphate supply due to carbonate bioclast dissolution. The 87Sr/86Sr ratio of celestite (0.706872-0.707040) is consistent with deposition from Jurassic marine-derived waters. Carbon and oxygen isotopic compositions of bulk calcite and dolomite are consistent with marine carbonates. Siderite, only present in the maximum clay zone, has chemical composition and δ18O consistent with a marine environment. Its δ13C is however lower than those of marine carbonates, suggesting a contribution of 13C-depleted carbon from degradation of organic matter. δ18O values of diagenetic chalcedony range between +27‰ and +31‰, suggesting precipitation from marine-derived pore waters. Late calcite crosscutting a vein filled with chalcedony and celestite, and late euhedral quartz in a limestone from the top of the formation have lower δ18O values (∼+19‰), suggesting that they precipitated from meteoric fluids, isotopically close to present-day pore waters of the formation. Finally, the study illustrates the transition from very active, biotic diagenesis to abiotic diagenesis. This transition appears to be driven by compaction of the sediment, which inhibited movement of bacterial cells by reduction of porosity and pore sizes, rather than a lack of inorganic carbon or sulphates.  相似文献   

4.
Tectonically isolated blocks of carbonate rocks present within the anhydritic Haselgebirge mélange of the Northern Calcareous Alps record a complex history of deformation and associated deep-burial diagenetic to very low-grade metamorphic reactions. Fluids were hot (up to ≈ 250 °C) and reducing brines charged with carbon dioxide. Individual carbonate outcrops within the mélange record different regimes of brine–rock reactions, ranging from pervasive dolomite recrystallization to dedolomitization. Early diagenetic features in these carbonates were almost entirely obliterated. Matrix dolomite alteration was related to thermochemical sulphate reduction (TSR) recognized by the replacement of anhydrite by calcite + pyrite ± native sulphur. Pyrite associated with TSR is coarsely crystalline and characterized by a small sulphur isotope fractionation relative to the precursor Permian anhydrite. Carbonates associated with TSR show low Fe/Mn ratios reflecting rapid reaction of ferrous iron during sulphide precipitation. As a result, TSR-related dolomite and calcite typically show bright Mn(II)-activated cathodoluminescence in contrast to the dull cathodoluminescence of many (ferroan) carbonate cements in other deep-burial settings. In addition to carbonates and sulphides, silicates formed closely related to TSR, including quartz, K-feldspar, albite and K-mica. 40Ar/39Ar analysis of authigenic K-feldspar yielded mostly disturbed step-heating spectra which suggest variable cooling through the argon retention interval for microcline during the Late Jurassic. This timing coincides with the recently recognized subduction and closure of the Meliata-Hallstatt ocean to the south of the Northern Calcareous Alps and strongly suggests that the observed deep-burial fluid–rock reactions were related to Jurassic deformation and mélange formation of these Permian evaporites.  相似文献   

5.
Deposits of catastrophic rockslides composed of lithologies rich in carbonate minerals may undergo precipitation of cements that can be used to proxy-date the rockslide event and/or subsequent geomorphic changes of the rockslide mass.In the Alps, localized to widespread lithification of post-Glacial rockslide deposits is observed in lithologies ranging from limestones and dolostones to metacarbonates to calcphyllites. Lithification of rockslide deposits to breccias may be localized to meteoric ‘runoff-shadows’ below larger boulders, or may comprise a layer of breccia or may affect a rockslide mass down its base. In addition, precipitation of cements and small stalactites may take place in megapores on boulder undersides. Cements found in rockslide deposits comprise skalenohedral calcite, prismatic calcite, blocky calcite, calcitic micrite and micropeloidal calcitic cement and, rarely, botryoidal aragonite. Initial cement formation probably is driven by meteoric dissolution–re-precipitation of (mini-) micritic abrasive rock powder generated by dynamic disintegration during the rockslide event. Preliminary 234U/230Th ages of rockslide cements support a concept that cementation starts immediately or early after a rockslide event. In rockslide deposits of calcphyllite with accessory pyrite, oxidation of pyrite probably also propels the process of carbonate dissolution–re-precipitation. Limestone-precipitating springs emerging from rockslide masses, and well-cemented talus slopes and fluvial conglomerates percolated by rockslide-derived groundwaters, indicate that rockslide deposits remain diagenetically active long after emplacement.  相似文献   

6.
Ridge sandstone of Jurassic Jumara dome of Kachchh was studied in an attempt to quantify the effects of diagenetic process such as compaction, cementation and dissolution on reservoir properties. The average framework composition of Ridge sandstone is Q80F17L3, medium-to coarse grained and subarkose to arkose. Syndepositional silty to clayey matrix (3% average) is also observed that occurs as pore filling. The diagenetic processes include compaction, cementation and precipitation of authigenic cements, dissolution of unstable grains and grain replacement and development of secondary porosity. The major cause of intense reduction in primary porosity of Ridge sandstone is early cementation which include silica, carbonate, iron, kaolinite, illite, smectite, mixed layer illite-smectite and chlorite, which prevents mechanical compaction. The plots of COPL versus CEPL and IGV versus total cement suggest the loss of primary porosity in Ridge sandstone is due to cementation. Cements mainly iron and carbonate occurs in intergranular pores of detrital grains and destroys porosity. The clay mineral occurs as pore filling and pore lining and deteriorates the porosity and permeability of the Ridge sandstone. The reservoir quality of the studied sandstone is reduced by clay minerals (kaolinite, illite, smectite, mixed layer illitesmectite, chlorite), carbonate, iron and silica cementation but on the other hand, it is increased by alteration and dissolution of the unstable grain, in addition to partial dissolution of carbonate cements. The potential of the studied sandstone to serve as a reservoir is strongly related to sandstone diagenesis.  相似文献   

7.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

8.
Carbonate cements (calcite, siderite, dolomite, and ankerite) formed throughout the diagenetic history of the Sag River and Shublik Formations. The trace element and isotopic geochemistry of these cements varies as a function of the timing of precipitation. Earliest calcites, formed prior to significant compaction of the sediment, are relatively enriched in Mg (up to 4·4 mol%), and have 87Sr/86Sr values (mean = 0·707898) compatible with the original marine pore waters. Later calcites are relatively Fe-rich (up to 5·0 mol%) and are characterized by increasing 87Sr/86Sr values (up to 0·712823) and Sr content with decreasing age. The Fe content of zoned siderite and dolomite/ankerite rhombs increases towards the outside of the rhombs (i.e. increasing Fe content with decreasing age). These geochemical variations appear principally to result from changes in pore-water chemistry during diagenesis. The increase in 87Sr/86 Sr and Sr content of the cements is most likely due to interaction between pore waters and 87 Sr-rich clay and possibly feldspar in Ellesmerian mudrocks (whole rock 87Sr/86 Sr signatures for the mudrocks are > 0·716). Pore-water Fe2+ concentration was probably controlled by diagenetic alterations involving Fe-bearing minerals (e.g. pyrite precipitation). A reconnaissance examination of carbonate cements in the overlying Kingak Shale indicates that similar alterations occurred in the Kingak. The low δ18 O value of some calcite cements (-11·96% PDB) suggests that an influx of meteoric water may have occurred in the mid-Neocomian, though the low value could also result from an abnormally high geothermal gradient associated with mid-Neocomian rifting.  相似文献   

9.
The Middle Jurassic Khatatba Formation acts as a hydrocarbon reservoir in the subsurface in the Western Desert, Egypt. This study, which is based on core samples from two exploration boreholes, describes the lithological and diagenetic characteristics of the Khatatba Formation sandstones. The sandstones are fine‐ to coarse‐grained, moderately to well‐sorted quartz arenites, deposited in fluvial channels and in a shallow‐marine setting. Diagenetic components include mechanical and chemical compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of calcite cements and feldspar grains. The widespread occurrence of an early calcite cement suggests that the Khatatba sandstones lost a significant amount of primary porosity at an early stage of its diagenetic history. In addition to calcite, several different cements including kaolinite and syntaxial quartz overgrowth occur as pore‐filling and pore‐lining cements. Kaolinite (largely vermicular) fills pore spaces and causes reduction in the permeability of the reservoir. Based on framework grain–cement relationships, precipitation of the early calcite cement was either accompanied by or followed the development of part of the pore‐lining and pore‐filling cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late kaolinite clay cement occurs due to dissolved feldspar and has an impact on the reservoir quality of the Khatatba sandstones. Open hydraulic fractures also generated significant secondary porosity in sandstone reservoirs, where both fractures and dissolution took place in multiple phases during late diagenetic stages. The diagenesis and sedimentary facies help control the reservoir quality of the Khatatba sandstones. Fluvial channel sandstones have the highest porosities and permeabilities, in part because of calcite cementation, which inhibited authigenic clays or was later dissolved, creating intergranular secondary porosity. Fluvial crevasse‐splay and marine sandstones have the lowest reservoir quality because of an abundance of depositional kaolinite matrix and pervasive, shallow‐burial calcite and quartz overgrowth cements, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Petrographic and geochemical studies of an Upper Eocene reef and associated basinal sediments from the mixed carbonate–siliciclastic fill of the south‐eastern Pyrenean foreland basin near Igualada (NE Spain) provide new insights into the evolution of subsurface hydrology during the restriction of a marine basin. The reef deposits are located on delta‐lobe sandstones and prodelta marls, which are overlain by hypersaline carbonates and Upper Eocene evaporites. Authigenic celestite (SrSO4) is an important component in the observed diagenetic sequences. Celestite is a significant palaeohydrological indicator because its low solubility constrains transportation of Sr2+ and SO42? in the same diagenetic fluid. Stable isotopic analyses of carbonates in the reef indicate that meteoric recharge was responsible for aragonite stabilization and calcite cementation. Sulphur and oxygen isotope geochemistry of the celestite demonstrates that it formed from residual sulphate after bacterial sulphate reduction, but also requires that there was a prior episode of sulphate recycling. Meteoric water reaching the reef and basinal areas was most probably charged with SO42? from the dissolution of younger Upper Eocene marine evaporites. This sulphate, combined with organic matter present in the sediments, fuelled bacterial sulphate reduction in the meteoric palaeoaquifer. Strontium for celestite precipitation was partly derived in situ from dissolution of aragonite corals in the reef and basinal counterparts. However, 87Sr/86Sr data also suggest that Sr2+ was partly derived from dissolution of overlying evaporites. Mixing of these two fluids promoted celestite formation. The carbonate stable isotopic data suggest that the local meteoric water was enriched in 18O compared with that responsible for stabilization of other reefs along the basin margin. Furthermore, meteoric recharge at Igualada post‐dated evaporite deposition in the basin, whereas other parts of the same reef complex were stabilized before evaporite formation. This discrepancy resulted from the spatial distribution of continental siliciclastic units that acted as groundwater conduits.  相似文献   

11.
Zoned calcites were found in the phragmacone chambers of three Sonniniid ammonites from marine Middle Jurassic sandstones (Isle of Skye, U.K.). Each ammonite has a unique sequence of up to nine zones of calcite which fill or partially fill the chambers. Zones are defined by changes in the density of minute opaque inclusions and variation in trace-element composition. Proximal (early) calcites have undulose extinction and some exhibit the specific fabrics of fascicular-optic and radiaxial fibrous calcites. Microdolomite inclusions are found in one specimen. Early calcites, interpreted as replacements after a single isopachous fringe of acicular carbonate (probably high magnesium calcite), are succeeded by blocky ferroan calcite cement. In one specimen there are two distinct generations of calcite, in the others there is a continuous mosaic incorporating both early calcites and late cement. Isotopic composition of the early calcite zones demonstrates the initial importance of organic derived carbon (δ13C =— 26‰, δ18O ‰ O). Further cementation and mineralogical stabilization took place at increased temperatures and probably after modification of the pore water isotopic composition (calcites with δ13C =— O‰, δ18O~— 10‰). The distinctive fabrics and zonal patterns probably developed during the replacement of the precursor cement and are not primary growth features. Reversals in isotopic and trace element trends are believed to be related to the rate of neomorphic crystal growth and hence to the degree of exchange with external pore waters. Further increase in temperature, probably during Tertiary igneous activity, gave rise to the extremely light δ18O values of the late cements in the ammonite which had previously had least contact with external waters (cements with δ13C ~ O, δ18O ~— 20‰).  相似文献   

12.
MUCHEZ  NIELSEN  SINTUBIN  & LAGROU 《Sedimentology》1998,45(5):845-854
Two calcite cements, filling karst cavities and replacing Lower Carboniferous limestones at the Variscan Front Thrust, were precipitated after mid-Jurassic Cimmerian uplift and subsequent erosion but before late Cretaceous strike-slip movement. The first calcite (stage A) is nonferroan and crystals are coated by hematite and/or goethite. These minerals also occur as inclusions along growth zones. The calcite lattice contains < 0·07 mol.% Fe, but Mn concentrations can be as high as 0·72 mol.% in bright yellow luminescent zones. Primary, originally one-phase, all-liquid, aqueous inclusions have a final melting temperature between ?0·2° and +0·2 °C, indicating a meteoric origin of the ambient water. The δ13C and δ18O values of the calcites are between ?7·3‰ and ?6·3‰, ?7·8‰ and ?5·5‰ on the Vienna PeeDee Belemnite (VPDB) scale, respectively. The second calcite (stage B) consists of ferroan (0·13–0·84 mol.% Fe) blocky crystals with Mn concentrations between 0·34 and 0·87 mol.%. Primary, single-phase aqueous fluid inclusions indicate precipitation from a meteoric fluid below 50 °C . The δ13C values of stage B calcites vary between ?7·3‰ and ?2·1‰ VPDB and the δ18O values between ?7·9‰ and ?7·2‰ VPDB. A precipitation temperature below 50 °C for the stage A calcites and the presence of iron oxide/hydroxide inclusions in the crystals indicate near-surface precipitation conditions. Within this setting, the geochemistry of the nonferroan stage A calcites reflects precipitation under oxic to suboxic conditions. The ferroan stage B calcites precipitated in a reducing environment. The evolution from the stage A to stage B calcites and the associated geochemical changes are interpreted to be related to the change from semiarid to humid conditions in western Europe during late Jurassic–Cretaceous times. A change in humidity can explain the evolution of groundwater from oxic/suboxic to reducing conditions during calcite precipitation. The typically higher δ13C values of the stage B compared to the stage A calcites can be explained by a smaller contribution of carbon derived from soil-zone processes than from carbonate dissolution in the groundwater under humid conditions. The small shift to lower δ18O between stage A and B calcites may be caused by a higher precipitation temperature or a decrease in the δ18O value of the meteoric water. This decrease could have been caused by a change in the source of the air masses or by an increase in the amount of rainfall during the early mid-Cretaceous. Although the latter interpretation is preferred, it cannot be proven.  相似文献   

13.
Two types of ‘pseudobreccia’, one with grey and the other with brown mottle fabrics, occur in shoaling‐upward cycles of the Urswick Limestone Formation of Asbian (Late Dinantian, Carboniferous) age in the southern Lake District, UK. The grey mottle pseudobreccia occurs in cycle‐base packstones and developed after backfilling and abandonment of Thalassinoides burrow systems. Burrow infills consist of a fine to coarse crystalline microspar that has dull brown to moderate orange colours under cathodoluminescence. Mottling formed when an early diagenetic ‘aerobic decay clock’ operating on buried organic material was stopped, and sediment entered the sulphate reduction zone. This probably occurred during progradation of grainstone shoal facies, after which there was initial exposure to meteoric water. Microspar calcites then formed rapidly as a result of aragonite stabilization. The precipitation of the main meteoric cements and aragonite bioclast dissolution post‐date this stabilisation event. The brown mottle pseudobreccia fabrics are intimately associated with rhizocretions and calcrete, which developed beneath palaeokarstic surfaces capping cycle‐top grainstones and post‐date all depositional fabrics, although they may also follow primary depositional heterogeneities such as burrows. They consist of coarse, inclusion‐rich, microspar calcites that are always very dull to non‐luminescent under cathodoluminescence, sometimes with some thin bright zones. These are interpreted as capillary rise and pedogenic calcrete precipitates. The δ18O values (?5‰ to ?8‰, PDB) and the δ13C values (+2‰ to ?3‰, PDB) of the ‘pseudobreccias’ are lower than the estimated δ18O values (?3‰ to ?1‰ PDB) and δ13C values of (+2‰ to +4‰ PDB) of normal marine calcite precipitated from Late Dinantian sea water, reflecting the influence of meteoric waters and the input of organic carbon.  相似文献   

14.
Early diagenesis of the Upper Cretaceous (late Coniacian to early Santonian) Marshybank Formation was controlled by depositional environment (composition of depositional water, Fe and organic content of the sediment, sedimentation rate, proximity to the shoreline) and influx of meteoric water related to relative sea-level fall. Five depositional environments, each characterized by a distinct early diagenetic mineral assemblage, have been recognized. Offshore shelf sediments that were deposited in a dysaerobic environment are characterized by abundant framboidal pyrite and rare septarian concretions, composed of ‘early’ calcite and siderite. Intense sulphate reduction, promoted by the dysaerobic depositional water, was the primary influence on early diagenesis. Offshore shelf sediments deposited under aerobic conditions are characterized by abundant concretions, composed of two generations of siderite (S1 and S2). In this environment, methanogenesis, rather than sulphate reduction, was more important. Early diagenesis of the inner shelf sands was generally limited. However, in sands deposited proximal to the shoreline, mixing of marine and meteoric waters promoted crystallization of Fe-rich chlorite and siderite. The shoreface was characterized by dissolution of detrital minerals in the upper portion, and precipitation of kaolinite or illite/smectite in the lower portion. In the coastal plain environment, brackish water and early reducing conditions resulted in formation of abundant euhedral pyrite. Ankerite, rather than siderite, is the typical early diagenetic carbonate. The δ18O values of the earliest cements (i.e. ‘early’ calcite, siderite S1, inner shelf siderite) indicate crystallization from a low-18O, marine-derived porewater. Assuming crystallization at 25°C, a δ18O value of about ?7‰ (SMOW) can be estimated for the seaway during Marshybank Formation time. Similar calculations for the overlying Dowling Member (Puskwaskau Formation) suggest that the δ18O value of the seaway increased to about ?4% (SMOW), consistent with its transgressive nature. Very low δ18O values are exhibited by siderite S2. These results indicate crystallization during intermediate diagenesis (≥60°C) from meteoric water (≥? 15‰ SMOW) that entered the Marshybank Formation during sea-level lowstand.  相似文献   

15.
塔中地区良里塔格组发育巨厚的礁滩相碳酸盐岩,为碳酸盐岩储层的形成提供了有利条件。通过对钻井岩心和薄片分析,系统研究了研究区良里塔格组碳酸盐岩的储层岩石学、成岩作用类型和特征,总结了各类成岩作用的识别标志、发育规律及对储集体形成的影响。研究区碳酸盐岩储层的成岩作用包括泥晶化作用、白云石化作用、方解石胶结作用、溶蚀作用、硅化和硅质充填作用,以及压实、压溶作用、破裂作用和自生黄铁矿作用。在此基础上,总结了良里塔格组碳酸盐岩成岩序列及储层孔隙演化规律,认为早期强烈的方解石胶结作用和压实压溶作用降低了储层的孔隙度和渗透率,而溶蚀作用和构造破裂作用对良里塔格组礁滩相碳酸盐岩优质储层的形成具有明显控制作用。  相似文献   

16.
贵州紫云二叠纪生物礁的胶结作用   总被引:8,自引:0,他引:8       下载免费PDF全文
应用岩石学和地球化学方法研究了中国西南地区发育最好的紫云二叠纪生物礁组合的胶结作用,识别出七种胶结物类型,详细描述了它们的岩石学及地球化学特征,探讨了礁组合的胶结作用史。  相似文献   

17.
The Pennsylvanian phylloid algal mounds exposed in the Cervatina Limestone of the Cantabrian Zone (NW Spain) developed during the highstands of high-frequency shallowing-upward cycles and lack evidence of subaerial exposure at their tops. Mound core facies are composed of massive bafflestones with variable amounts of calcite cements and anchicodiacean phylloid algae with cyathiform thalli preserved in growth position. Through standard petrographic, isotopic (δ18O and δ13C), major and trace element (Ca, Mg, Fe, Mn, Sr) and cathodoluminescence analyses, five calcite cement phases (cement 1 (C1)–cement 5 (C5)) have been identified filling primary and secondary pores. Early marine diagenesis is represented by micritization and non-luminescent to mottled-dull luminescent high-Mg calcite fibrous marine cement (C1). A dissolution phase then occurred and created vuggy and moldic pores. Based on the absence of field or petrographical or geochemical evidence of exposure, it is inferred that dissolution occurred in near-surface undersaturated marine waters with respect to aragonite related to progressive organic matter oxidation. Secondary porosity was subsequently filled by dull-bright-dull bladed high-Mg calcite (C2), which precipitated in the early shallow burial from marine-derived pore waters. Remaining porosity was occluded by shallow-burial precipitates consisting of non-luminescent scalenohedral low-Mg calcite (C3) followed by non-ferroan dull luminescent calcite spar (C4). Latter phases of calcite spar exhibiting non- and dull luminescence (C5) are associated with burial calcite veins. Low δ18O values (around ?8‰), moderately depleted δ13C values (around 0.5‰) and the homogeneity of trace element contents of carbonate matrix, cements and vein-filling calcites suggest burial isotopic re-equilibration and recrystallization, probably in Early Permian times during post-thrusting orocline formation.  相似文献   

18.
Unusual textural and chemical characteristics of disseminated dolomite in Upper Jurassic shelf sediments of the North Sea have provided the basis for a proposed new interpretation of early diagenetic dolomite authigenesis in highly bioturbated marine sandstones. The dolomite is present throughout the Franklin Sandstone Formation of the Franklin and Elgin Fields as discrete, non‐ferroan, generally unzoned, subhedral to highly anhedral ‘jigsaw piece’ crystals. These are of a similar size to the detrital silicate grains and typically account for ≈5% of the rock volume. The dolomite crystals are never seen to form polycrystalline aggregates or concretions, or ever to envelop the adjacent silicate grains. They are uniformly dispersed throughout the sandstones, irrespective of detrital grain size or clay content. Dolomite authigenesis predated all the other significant diagenetic events visible in thin section. The dolomite is overgrown by late diagenetic ankerite, and bulk samples display stable isotope compositions that lie on a mixing trend between these components. Extrapolation of this trend suggests that the dolomite has near‐marine δ18O values and low, positive δ13C values. The unusual textural and chemical characteristics of this dolomite can all be reconciled if it formed in the near‐surface zone of active bioturbation. Sea water provided a plentiful reservoir of Mg and a pore fluid of regionally consistent δ18O. Labile bioclastic debris (e.g. aragonite, Mg‐calcite) supplied isotopically positive carbon to the pore fluids during shallow‐burial dissolution. Such dissolution took place in response to the ambient ‘calcite sea’ conditions, but may have been catalysed by organic matter oxidation reactions. Bioturbation not only ensured that the dissolving carbonate was dispersed throughout the sandstones, but also prohibited coalescence of the dolomite crystals and consequent cementation of the grain framework. Continued exchange of Mg2+ and Ca2+ with the sea‐water reservoir maintained a sufficient Mg/Ca ratio for dolomite (rather than calcite) to form. Irregular crystal shapes resulted from dissolution, of both the dolomite and the enclosed fine calcitic shell debris, before ankerite precipitation during deep‐burial diagenesis.  相似文献   

19.
Abstract

The Upper Triassic Chang 8 Member, the eighth member of the Yanchang Formation, is a key reservoir interval in the Jiyuan area of the Ordos Basin. The reservoir quality of the Chang 8 Member tight sandstones is extremely heterogeneous owing to the widespread distribution of carbonate cements. The carbonate cements commonly develop near sandstone–mudstone interfaces and gradually decrease away from the interfaces to the centres of the sand bodies. However, the content of carbonate cements (≤6%) has a positive correlation with the visual porosity in the Chang 8 Member sandstone, revealing that the carbonate cements contribute to the compaction resistance and the residual primary pores of reservoirs during the diagenetic process. Three main types of carbonate cement are identified: type I (calcite), type II (calcite and ferrocalcite), and type III (dolomite and ankerite). The type I calcite is characterised by enriched δ13C (mean –3.41‰) and δ18O (mean –15.17‰) values compared with the type II (mean δ13C?=?–7.33‰, δ18O?=?–18.90‰) and type III (mean δ13C?=?–10.0‰, δ18O?=?–20.2‰) cements. Furthermore, the mean δ18O value (–4.7‰) of the type I pore fluids is 1.5‰ and 0.9‰ lower than the type II (mean –3.2‰) and type III (mean –3.8‰) pore fluids, respectively. This indicates that the evolving pore fluids experienced some relative strong water–rock interactions that provided the original materials (e.g. Ca2+, Fe3+, and Mg2+) for the carbonate cements during the diagenetic process. The highly saline lake water directly provided the primary material for the type I calcite precipitation, which also provided the material necessary for the precipitation of the type II and type III carbonate cements, causing enriched δ18O values of the pore fluids during the precipitation of the type II and type III carbonate cements. Although the earlier dissolved pores were filled with ferrocalcite, dolomite and ankerite in the middle–late diagenetic stages, some residual pores and fractures remained to become the potential reservoir storage spaces for the oil and gas exploration in the Jiyuan area.  相似文献   

20.
A. Sáez  L. Cabrera 《Sedimentology》2002,49(5):1073-1094
ABSTRACT A small, closed, lacustrine system developed during the restraining overstep stages of the Oligocene As Pontes strike‐slip basin (Spain). The increase in basin accommodation and the headward spread of the drainage, which increased the water input, triggered a change from shallow, holomictic to deeper, meromictic conditions. The lower, shallow, lacustrine assemblage consists of mudstone–carbonate cycles recording lacustrine–palustrine ramp deposition in a saline lake. High Sr content in some early diagenetic calcites suggests that aragonite and calcite made up the primary carbonate muds. Early dolomitization took place together with widespread pedogenic activity. The upper, deep, freshwater, lacustrine assemblage includes bundles of carbonate–clay rhythmites and fine‐grained turbidite beds. Primary calcite and diagenetic siderite make up the carbonate laminae. The Mg content of the primary carbonates records variations in Mg/Ca ratios in lacustrine waters. δ18O and δ13C covariance trends in calcite reinforce closed drainage conditions. δ18O data indicate that the lake system changed rapidly from short‐lived isotopically light periods (i.e. from seasonal to pluriannual) to longer steady‐state periods of heavier δ18O (i.e. from pluriannual to millennial). The small δ13C changes in the covariant trends were caused by dilute inflow, changing the contributions of dissolved organic carbon in the system and/or internal variations in lacustrine organic productivity and recycling. In both shallow and deep carbonate facies, sulphate reduction and methanogenesis may account, respectively, for the larger negative and positive δ13C shifts recorded in the early diagenetic carbonates (calcite, dolomite and siderite). The lacustrine system was very susceptible to high‐frequency, climatically forced water balance variations. These climatic oscillations interfered with the low‐frequency tectonic and morphological changes in the basin catchment. This resulted in the superposition of high‐order depositional, mineralogical and geochemical cycles and rhythms on the lower order lacustrine infill sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号