首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过对太原市地面沉降资料、气象水文和地质条件以及地下水等大量资料的分析与整理,考虑到太原市各个沉降中心的沉降趋势不尽相同,对太原市吴家堡、西张、万柏林和下元4个沉降中心分别建立BP神经网络模型,并基于训练好的BP神经网络模型,在太原市地下水开采量的规划方案下,预测了在不同降水保证率下2009-2015年地面沉降的趋势,...  相似文献   

2.
温州市永强平原经济发达,工业化的发展和地下水无计划的开采,使永强平原地面沉降较为严重,永中累计沉降量超过300mm。为了更好地对永强平原地面沉降做出分析预测,本文通过研究区域地质环境、地下水开采量、地下水位的动态变化特征及2005~2010年的地面沉降监测资料,分析地面沉降速率、范围、沉降量,从而进一步探讨地面沉降与地层结构、地下水动态的关系,同时采用年开采量和年平均沉降速率预测2015年的地面沉降量。分析结果对深化永强平原地面沉降研究具有一定意义。  相似文献   

3.
常州市地面沉降灰色模型预测   总被引:3,自引:0,他引:3  
地面沉降过程可视为有限体系,本文分析了常州市地面沉降动态特征,采用费尔哈斯特(Verhulst)生物繁殖模型,以监测资料为背景予以灰色系统理论处理和进行沉降旋回期或寿命预测。在地下水得到控制开采和回灌补给条件下,常州市地面沉降旋回期为60年,至2030年沉降速率超近于零,为常州市合理开发地下水,控制沉降灾害提供宏观中长期预测信息。  相似文献   

4.
太原市地质灾害研究与防治   总被引:1,自引:0,他引:1  
本文详细论述了太原市地质灾害形成的条件,尤其是新构造运动特点及其影响。系统论述了太原市地质灾害的类型及其特征。将地质灾害分为两大类:自然地质灾害和人类活动引起的地质灾害,重点放在后者。主要是地面沉降与矿区地面塌陷、地裂缝。地面沉降较为严重,吴家堡沉降中心90年代以来,年均沉降量已达225mm,且处于发展阶段。文中最后提出了地质灾害的防治建议。  相似文献   

5.
徐州大屯中心区地面沉降趋势预测   总被引:1,自引:0,他引:1  
徐州大屯中心区1988年建立了地面沉降观测系统,2005年最大累计沉降量达到600 mm.累计沉降量大于100 mm的地区面积达到11.57 km2.本文根据近20年的沉降观测数据分析了中心区地面沉降的时空分布特征,并采用灰色模型方法,对地面沉降趋势进行了预测,结果表明到2010年最大累计沉降量将达到753 mm,累计沉降量大于100 mm的地区将达到32.86 km2,对中心区的建筑、地下管网将造成较大威胁,应尽快采取防治措施.  相似文献   

6.
常州地面沉降的灰色Verhulst预测   总被引:6,自引:0,他引:6  
文章首先指出了土体的固结沉降过程具有“S”型曲线特征,这与Verhulst模型(Logistic生长模型)具有相似性.然后比较系统地给出了Logistic生长模型、模型的参数估计、模型的精度检验及适用条件,并将模型用于常州市清凉小学地面沉降过程的模拟,进行了初步预测.研究表明,灰色Verhulst模型在预测地面沉降方面是十分有效的,特别是发生在主采层及顶、底板土层中的变形,该模型给出地面沉降预测值时间序列与实测值序列是相当接近的.  相似文献   

7.
山东地面沉降灾害以鲁北平原最为严重,在德州地区的地面沉降已对当地人民的正常生产和生活构成了威胁,并制约了当地经济的可持续发展。通过建立水准测量网络及监测运行,查明了德州市地面沉降的规模和范围,研究成果表明工作区均存在地面沉降现象,截至2010年,德城区由于地下水开采强度大,地面沉降幅度最大,目前地面累计沉降量为-1186.9~-636.9mm,多年平均沉降速率为59.35mm/a,形成了以市区西北部为中心的地面沉降盆地。超量开采深层地下水是造成大规模地面沉降的重要因素。  相似文献   

8.
唐山沿海地区经济在迅速发展,沿海地区城市化规模在扩大,地下水开采量增大,地面沉降加剧.文中分析了唐山沿海地区的水文地质条件,概化为3个含水层、3个弱透水层,共6个压缩层.建立了三维地下水流和垂向一维压缩完全耦合模型.采用25a的观测资料校正模型,计算值与实测值拟合较好,模型具有较高的仿真性和适用性.预测了10a末的地面沉降;当地下水以现有开采量开采时,沉降中心累计达1192.3mm, 10a沉降352.3mm,沉降速率为35.23mma-1;当地下水的开采量在现有开采量的基础上增加10%时,沉降中心累计达1260.8mm, 10a沉降420.8mm,沉降速率为42.08mma-1; 当地下水的开采量在现有开采量的基础上减小10%时,沉降中心累计达1088.7mm, 10a沉降247.9mm,沉降速率为24.79mma-1.增大10%的地下水开采量, 10a地面沉降量增加68.5mm;减少10%的地下水开采量, 10a地面沉降量减少104.4mm.因此,控制地下水开采量是控制地面沉降的有效方法.  相似文献   

9.
天津市地面沉降历史悠久,自1923年至今共经历了6个不同的阶段。截至2020年,天津市大面积的地面沉降已基本得到控制,但局部还存在年沉降量大于50 mm的沉降严重区,从大面积治理到小区域精准防控,天津市地面沉降分布特征已体现出新形势,地面沉降防治工作也面临着新的要求。为准确掌握新形势下地面沉降发展规律,精准施策,针对性治理,文中收集并分析2010—2020年天津市地面沉降水准测量、地下水位、地下水开采量等数据,对2010—2020年天津市地面沉降严重区分布特征及演化规律进行归纳总结。研究结果表明:2010—2020年,天津市地面沉降经历了沉降波动期(2010—2012年)、稳中向好期(2013—2016年)和快速减缓期(2017—2020年)三个时期,地面沉降平均沉降量下降了37%,沉降严重区面积减小了67%。各阶段沉降变化均与地下水开采量密切相关,截至2020年,天津市现存集中分布于西南部的5个沉降严重区,分布范围与深部含水组地下水漏斗分布范围基本一致。  相似文献   

10.
地面沉降问题严重影响着鲁西南经济发展区交通工程建设。文中选择某线性工程两侧5 km范围作为研究区,文章收集RadarSAT-2(2017—2020年)、Sentinel-1A(2019—2020年)存档数据和沿线区域地质、水文地质、矿产开发资料,采用时序InSAR分析的方法,对研究区沿线地面沉降分布特征及规律进行综合分析。研究结果表明:研究区主要地面沉降诱因是煤矿采空区塌陷和地下水超量开采,前者以矿区工作面为中心形成沉降漏斗,沉降速率变化和沉降中心移动与煤矿作业工作面挖掘进度和转移密切相关;后者沉降分布规律与地下水开采使用点相关,形成与地下水开采使用范围相近的沉降带。研究区在2017—2020年内持续发生沉降,最大年均沉降速率为136.5 mm/a,单年累计最大沉降量为220 mm。经同期CPI水准点观测结果校核,InSAR数据处理成果平均误差小于1 cm/a,相关系数到达70%以上。本文采用的分析方法能及时准确反映出线路方案穿行研究区内各处地面沉降变化,为线路方案规划和地质灾害整治提供有效合理参考。  相似文献   

11.
灰色线性回归组合模型在北京地面沉降分层预测中的应用   总被引:1,自引:0,他引:1  
灰色系统理论GM(1,1)模型,应用于地面沉降模拟和预测中只能分析数据的指数变化规律。对于地面沉降发展过程中,存在的线性关系不能有效地反映。本文利用灰色组合模型中的第一类灰色组合模型即GM(1,1)与线性回归模型相融合。选取北京东部某地面沉降监测站2004~2012年的分层监测数据建立模型,计算出各监测层位沉降的数学模型,并以此预测各监测层位地面沉降量。结果表明:利用灰色线性回归组合模型在对地面沉降进行分层模拟和预测是可行的。在已有数据的基础上,利用数学模型进行沉降模拟时,两种模型的精度均很高,但通过模型预测未来一年沉降量时,灰色线性回归组合模型的精度,要远高于普通均值GM(1,1)模型。  相似文献   

12.
为掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19期C波段Radasat-2数据,采用SBAS-InSAR技术提取盘锦地区地面沉降速率和累积地面沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6km^2,最大沉降速率为-151.49mm/a;龙王村沉降区,面积约为33.28km^2,最大沉降速率为-119.55mm/a。与2007-2009年的3期ASAR数据得到的结果进行对比后发现,两者得到的沉降区基本一致。通过地面沉降监测数据的时序分析,累积沉降量和沉降区范围均随着时间不断增大。  相似文献   

13.
地面沉降是北京平原区最主要的地质灾害之一,形成了多个沉降中心,其将对高速铁路运行的安全性产生不利影响。以我国首条高速城际轨道交通—京津城际高铁工程为例,分析铁路沿线地面沉降发育现状,以及该线路运营五年多来的差异沉降与坡度变化特征。结果显示,由区域沉降导致的差异沉降量较大,但沉降坡度变化目前仍处于高铁轨道平顺性的设计要求许可范围内。以该线路100年使用年限的设计指标为预测时段,按2013年度沉降速率及2008~2013年间的平均沉降速率分别估算因差异沉降而导致的线路坡度变化,其最大值为3‰左右,远低于20‰的设计临界线;但显著的累计沉降量无疑将影响线路维护及安全运行。指出须采取切实有效的地面沉降防治措施,以减缓高铁线路坡度的变化速率。  相似文献   

14.
浙江省嘉兴市地面沉降及地下水资源开发利用分析   总被引:3,自引:0,他引:3  
浙江省嘉兴市地面沉降历经缓慢、显著、急剧和扩展等四个发展阶段,截止1994年沉降中心累计沉降量达709.6mm,沉降急剧期中心平均沉降速率41.9mm/a,近年中心沉降速率有所减缓1,平均在28mm/a左右,但沉降范围加速扩展。嘉兴市老城区基本在400mm沉降范围内。与外围城镇沉降区连成一体,形成北东向沉降带,累计沉降量大于50mm的面积已超过600km^2,并在继续快速扩展中。嘉兴市地面沉降已造  相似文献   

15.
改进的灰色预测模型在地面沉降预测中的应用   总被引:7,自引:0,他引:7  
在地面沉降这一复杂系统中,既含有已知的又古有未知的或非确定的信息,可以作为一个灰色系统来研究.本文针对地面沉降的下沉曲线非线性特征,提出用一种基于残差灰色预测模型对地面沉降量时间序列进行研究.结果表明,通过改进后的灰色预测模型,预测精度得到了提高,在沉降量比较大和水准点比较稀少的地区,利用此模型预测地面沉降可减少地面沉降监测经费,并能实时提供地面沉降预警信息.  相似文献   

16.
崔广强  林从谋  耿鹏 《岩土力学》2009,30(9):2770-2774
沉降观测是爆炸挤淤筑堤质量检测的一个重要手段,目前其监测方法较多还是按传统的观测法,需要较长的观测时间,耗时耗力。通过分析灰色Verhulst模型的特点,根据实际观测资料运用灰色Verhulst模型预测了堤身各时刻的沉降量,与实际观测具有较好的符合性,并预测了堤身的最终沉降量和所需时间。结合实例预测表明,这一模型具有较好的适用性,可以在类似工程中推广应用。  相似文献   

17.
利用SBAS-InSAR技术对济阳井田矿区40景C波段Sentinel-1A升轨数据进行处理,获取了2017年5月20日至2018年10月18日期间研究区内地面沉降的年平均沉降速率和累积沉降量。结果显示,研究区内年平均沉降速率最大达到320 mm/a,累积沉降量最大为447 mm。针对沉降较为严重区域选点进行特征点时序分析,结果表明,该位置的沉降量随着时间的推移持续增大,在研究时间段内没有减缓的趋势。矿区持续开采引发的地面沉降对周围地区也产生了一定影响。  相似文献   

18.
近几年,盘锦地区的地面沉降问题开始受到人们的关注。为了掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19景C波段Radarsat-2 SAR数据,采用SBAS-InSAR技术提取了盘锦地区地面沉降速率和累积沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6 km2,最大沉降速率为-151.49 mm·a-1;龙王村沉降区,面积约为33.28 km2,最大沉降速率为-119.55 mm·a-1。通过地表形变量时序分析,发现两个沉降区的范围随着时间不断扩大,累积沉降量不断增大。与水准监测数据进行对比后发现,两种监测方法得到的沉降区范围和沉降量大体一致,但两者间仍有差别。对研究区内油田井场分布和地下水水位降落漏斗特征与沉降区分布进行了对比分析,研究表明地面沉降与地下水开采、油气资源开采、新构造运动等多种因素具有密切关系。研究结果将为地质环境的管理、地面沉降灾害的防治及资源开发利用规划提供基础依据。  相似文献   

19.
鲁北地区作为华北平原地面沉降的重要组成部分,其地面沉降问题日趋严重。以滨州博兴县为工程背景,基于研究区详细水文地质与工程地质资料以及历年地面沉降监测数据,系统分析该地区地下水动态分布及地面沉降分布演化特征。以Biot多孔介质固结理论为基础,建立博兴县地面沉降三维流 固耦合数值模型,还原地面沉降发展过程并预测分析不同地下水开采方案下的沉降演化规律。研究结果表明:博兴县浅层地下水位降幅呈现南大北小特点,深层地下水形成了以县城区为中心的椭圆形地下水区域降落漏斗;地面逐渐形成了分别以博兴县城区、湖滨镇和店子镇为沉降中心的三个小型沉降区,且有相互关联扩展的趋势;地面沉降三维流固耦合模型较为理想还原了研究区地面沉降发展过程,预测在现状地下水开采方案下未来10年内地面沉降仍以较大速率继续发展,累计沉降量超500mm的区域面积不断扩大,当减小20%现状地下水开采量时是较为合理有效的开采方案。  相似文献   

20.
全过程沉降预测的新模型与方法   总被引:25,自引:4,他引:21  
地面沉降是普通存在的一种环境灾害为此提出了一种新模型,它概括了泊松曲线模型与Verhulst模型,能准确预测全过程沉降量的变化规律。提出了将非线性回归与3次样条插值相结合求解新模型的思路与方法,突破了泊松曲线模型所用三段计算法的局限。实例分析结果表明:所提出的方法能准确地求得非线性模型的解;新模型及方法与Verhulst模型及方法相比,能使模型计算值与实测值之间的残差大幅度减小。新模型为岩土工程设计提供了新的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号