首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19期C波段Radasat-2数据,采用SBAS-InSAR技术提取盘锦地区地面沉降速率和累积地面沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6km^2,最大沉降速率为-151.49mm/a;龙王村沉降区,面积约为33.28km^2,最大沉降速率为-119.55mm/a。与2007-2009年的3期ASAR数据得到的结果进行对比后发现,两者得到的沉降区基本一致。通过地面沉降监测数据的时序分析,累积沉降量和沉降区范围均随着时间不断增大。  相似文献   

2.
近几年,盘锦地区的地面沉降问题开始受到人们的关注。为了掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19景C波段Radarsat-2 SAR数据,采用SBAS-InSAR技术提取了盘锦地区地面沉降速率和累积沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6 km2,最大沉降速率为-151.49 mm·a-1;龙王村沉降区,面积约为33.28 km2,最大沉降速率为-119.55 mm·a-1。通过地表形变量时序分析,发现两个沉降区的范围随着时间不断扩大,累积沉降量不断增大。与水准监测数据进行对比后发现,两种监测方法得到的沉降区范围和沉降量大体一致,但两者间仍有差别。对研究区内油田井场分布和地下水水位降落漏斗特征与沉降区分布进行了对比分析,研究表明地面沉降与地下水开采、油气资源开采、新构造运动等多种因素具有密切关系。研究结果将为地质环境的管理、地面沉降灾害的防治及资源开发利用规划提供基础依据。  相似文献   

3.
利用覆盖南京市2007—2011年共17景ALOS PALSAR影像,通过短基线方法(SBAS)对研究区进行地面沉降监测,获取了时间形变特征、累积沉降量和年平均沉降速率,研究区平均沉降速率最大达-49.3 mm/a。在此基础上,通过搜集的南京市9个CORS点数据对SBAS结果进行验证,两者结果吻合度高,最大与最小偏差分别为4.4 mm/a和-4.6 mm/a,证明利用短基线方法在南京这种以平原地貌为主的地区进行地面沉降监测是可行的。  相似文献   

4.
本文首先通过分析地面沉降的诱发因素和研究对象,发现具有灰色特性,并且地面沉降随时间的变化曲线与Verhulst模型曲线相似,因而可以应用该模型预测太原市地面沉降。其次根据五个沉降中心中30个典型的水准观测点的累积沉降量建立了灰色Verhulst预测模型。最后预测了2010年与2015年的地面沉降发展趋势,得出2010年总体沉降范围向外扩展,小店中心扩大幅度较大,吴家堡年均沉降速率持续减缓;到2015年西张沉降趋势基本趋于稳定状态,万柏林和下元沉降速率减缓,吴家堡沉降幅度变化不大,万柏林、下元和吴家堡的沉降范围已连成一片,小店中心最大沉降量达1 508 mm,年均沉降速率为45 mm/a。  相似文献   

5.
地面沉降问题严重影响着鲁西南经济发展区交通工程建设。文中选择某线性工程两侧5 km范围作为研究区,文章收集RadarSAT-2(2017—2020年)、Sentinel-1A(2019—2020年)存档数据和沿线区域地质、水文地质、矿产开发资料,采用时序InSAR分析的方法,对研究区沿线地面沉降分布特征及规律进行综合分析。研究结果表明:研究区主要地面沉降诱因是煤矿采空区塌陷和地下水超量开采,前者以矿区工作面为中心形成沉降漏斗,沉降速率变化和沉降中心移动与煤矿作业工作面挖掘进度和转移密切相关;后者沉降分布规律与地下水开采使用点相关,形成与地下水开采使用范围相近的沉降带。研究区在2017—2020年内持续发生沉降,最大年均沉降速率为136.5 mm/a,单年累计最大沉降量为220 mm。经同期CPI水准点观测结果校核,InSAR数据处理成果平均误差小于1 cm/a,相关系数到达70%以上。本文采用的分析方法能及时准确反映出线路方案穿行研究区内各处地面沉降变化,为线路方案规划和地质灾害整治提供有效合理参考。  相似文献   

6.
温州市永强平原经济发达,工业化的发展和地下水无计划的开采,使永强平原地面沉降较为严重,永中累计沉降量超过300mm。为了更好地对永强平原地面沉降做出分析预测,本文通过研究区域地质环境、地下水开采量、地下水位的动态变化特征及2005~2010年的地面沉降监测资料,分析地面沉降速率、范围、沉降量,从而进一步探讨地面沉降与地层结构、地下水动态的关系,同时采用年开采量和年平均沉降速率预测2015年的地面沉降量。分析结果对深化永强平原地面沉降研究具有一定意义。  相似文献   

7.
文章采用时序InSAR技术对甘肃省金川铜镍矿区域地表沉降规律开展研究。利用Sentinel-1A干涉影像,基于SBAS-InSAR技术和时序D-InSAR技术,反演2018年1月—11月金川铜镍矿区域地表沉降。经过2种技术结果对比及验证分析表明,2018年矿区有2个沉降漏斗,分别是西二采区5-7行和老矿坑。西二采区5-7行的最大沉降速率为-14mm/a,雷达视线向累积最大形变量为13mm,地面形变呈平稳态势;老矿坑东南方存在明显的沉降,沉降最大速率为-85mm/a,雷达视线向累积最大形变量为78mm。  相似文献   

8.
豫北平原是河南省平原地区地面沉降灾害较严重地区之一,快速全面掌握豫北平原地面沉降信息、有效防控地面沉降的持续快速发展对中原城市群建设至关重要。本文借助中高分辨率RADARSAT-2雷达数据,基于SBAS-InSAR技术获取了豫北平原2014-2016年的地面沉降监测数据。监测结果表明:两年内豫北平原地面整体下沉,区内共圈定8个较明显的沉降区,总面积约3 006 km2,各沉降区沉降速率在25.00~114.85 mm/a之间;其中,除安阳县白壁镇-内黄县沉降区和辉县沉降区最大沉降速率分别达到95.36和114.85 mm/a之外,其余6个沉降区最大沉降速率均小于73.58 mm/a。根据沉降区现场实地调查和综合分析发现,豫北平原地面沉降主要是活动断裂、松软岩土、地下水超采、城市建设活动、石油和地热资源开采等共同作用的结果。建议将豫北平原地面沉降的防控重点放在人类活动引起的地下水超采和城市建设引发的松软岩土层超量堆载等方面。  相似文献   

9.
抚顺发电厂地面沉降成因分析及其灰色理论预测   总被引:2,自引:0,他引:2  
在论述研究区环境地质条件的基础上,对区内地面沉降的成因进行了分析,并基于区内地面沉降监测点实际观测数据建立了灰色DGM模型,然后以此模型对研究区未来三年的地面沉降进行了预测,预测结果表明:在未来三年内,区内大部分主要建筑物基础地面最大沉降量将超出或接近允许值,而基础沉降差在允许值范围内.  相似文献   

10.
徐州大屯中心区地面沉降机理分析与危险性评价   总被引:2,自引:0,他引:2  
地面沉降已经成为世界主要的环境地质灾害,过量抽取地下水是地面沉降主要的诱发因素.徐州大屯中心区从1976年开始观测地面沉降,1988年建立了地面沉降观测系统,观测数据显示2006年累积沉降量达到873mm.本文以该地区20多年的地下水位观测、地面沉降观测资料为基础,在地理信息系统软件ArcGIS支持下,分析了该地区地面沉降发展演化及沉降机理,并根据累积沉降量进行了危险性评价.  相似文献   

11.
徐州大屯中心区地面沉降趋势预测   总被引:1,自引:0,他引:1  
徐州大屯中心区1988年建立了地面沉降观测系统,2005年最大累计沉降量达到600 mm.累计沉降量大于100 mm的地区面积达到11.57 km2.本文根据近20年的沉降观测数据分析了中心区地面沉降的时空分布特征,并采用灰色模型方法,对地面沉降趋势进行了预测,结果表明到2010年最大累计沉降量将达到753 mm,累计沉降量大于100 mm的地区将达到32.86 km2,对中心区的建筑、地下管网将造成较大威胁,应尽快采取防治措施.  相似文献   

12.
为了研究地面沉降的时空分布模式、机理机制,选择北京典型沉降区——潮白河冲洪积扇为研究区,采用PS-InSAR技术、莫兰指数及地理探测器,分析了研究区地面沉降的空间异质性特征,探测了不同特征下的地面沉降的主要驱动因素。结果表明:2017-01—2019-01研究区内地面沉降时空分布特征以一般沉降为主,沉降速率为[-133,3] mm/a,最大累积沉降量为261 mm,呈北部轻微、中部较严重、南部较轻的分布状态,其中,严重、极严重等级地面沉降主要分布在中游顺义后沙峪东部等地区及中下游交界地带的潞城镇;不同地区地面沉降呈现不同的空间异质性特征,即不均匀地面沉降分布特征明显,中游、下游均表现为低—低集聚;不同分布特征下地面沉降主要驱动因素不同,中游地区主要驱动因素为第二承压水水位变化和可压缩层厚度,下游主要驱动因素为浅层地下水水位变化和第一承压水水位变化。莫兰指数能够有效分析地面沉降空间异质性,识别集聚特征;地理探测器可以探明沉降空间异质性成因,获得其主要驱动因素。  相似文献   

13.
近年来皖北平原地区地面沉降问题相对突出,区域地面沉降驱动力的量化研究尚且匮乏。为深入研究沉降灾害的发育特征,文章以亳州市为例,基于62景Sentinel-1数据,利用SBAS-InSAR技术获取2021年10月至2022年10月期间地面沉降的时空分布特征,并结合地理加权回归模型对亳州市地面沉降主要驱动力进行探讨。研究结果表明:(1)亳州市主体沉降速率为5~30 mm/a,平均沉降速率为5.7 mm/a。(2)最严重沉降区位于涡阳县公吉寺镇北侧,幅值为84.3 mm/a,沉降主要受煤矿开采所致;非采煤沉降区,最大沉降速率为25.8 mm/a,位于谯城区东北侧。(3)各驱动力因素对地面沉降的贡献度从大到小排序为深层水位变幅、中深层水位变幅、中深层地下水埋深、深层地下水埋深、单位面积GDP、松散层厚度、道路密度、人口密度。研究结果可为地质灾害防治提供基础数据支撑。  相似文献   

14.
根据江苏省徐州市睢宁县城区内可压缩土层的类型、空间分布特点及压缩变形等特征,建立了本区地面沉降计算地质模型。利用该模型计算出城区2013年累计地面沉降量3.08~380.60 mm,平均为162.41 mm,最大沉降量发生在城区西北部,该区域可压缩土层、黏性土的累计厚度大,地下水水位下降幅度较大。根据预测2030年地下水位埋深条件,采用地面沉降地质模型计算得出城区累计地面沉降量,在此基础上对区内地面沉降危险性进行分区,从而为地下水开采总量的控制及地面沉降监测控制提供相关建议措施,以避免城区2030年后地面沉降地质灾害逐步发展为特大型地质灾害。  相似文献   

15.
为了有效监测贵州西部地区因长期进行地下采矿引起的地面持续性沉降,本文以纳雍县中岭煤矿区为研究区,基于SBAS-InSAR技术,对覆盖其范围的91期Sentinenl-1A升轨影像(2019—2021年间),利用SVD奇异值准则获取了观测时段内的地面沉降范围和深度,进行了时序分析,通过采煤工作面和野外调查等手段,验证了监测结果的准确性与可靠性。结果表明:(1)在观测时段内,在研究区共探查到3处典型持续沉降中心,其视线向(Line of sight,LOS)年平均形变速率变化范围在31.92-48.56 mm·a-1,最大沉降速率达到-48.56 mm·a-1;(2)通过分析认为,研究区形变特征符合采矿沉陷规律,且随着时间的累积,沉降变形从起初不明显到变化剧烈,再到逐渐趋于稳定过程,其范围特征呈东西向延伸,渐有合并趋势,并不断向南北向扩张。从验证情况分析,认为基于SBAS-InSAR技术获取的地面沉降信息可靠,准确率达85%以上,可为矿山安全开采、沉降灾害的预治提供参考。  相似文献   

16.
东莞市是珠三角城市群和粤港澳大湾区的重要节点城市,深厚欠固结软弱土及其诱发的地面沉降已成为湾区内代表性的区域地质灾害问题,影响城市地质环境安全。为研究东莞市地面沉降发育规律及时空演变特征,采用改进时序InSAR技术对覆盖东莞地区的137景Sentinel-1 SLC SAR影像数据进行处理,分析了2015年6月至2020年6月地表形变动态演化规律。结果表明:(1)全域内地表沉降变形整体较稳定,沉降发育区占市域面积的34.6%,变形严重发育区主要集中在麻涌镇、道滘镇、洪梅镇、中堂镇、沙田镇及滨海湾新区;(2)大部分沉降变形点处于缓慢发展变形阶段,年平均沉降速率在20 mm/a以内,累计沉降量在1 000 mm以内;(3)结合形变监测和现场调查,认为地面沉降与深厚软土发育和人类工程活动的耦合作用有很强的相关性。证明该方法能较好地识别和反映城市复杂形态区地面沉降发育的时空演化特征,为灾害预警、减避及治理提供技术支持。  相似文献   

17.
研究区位于山东半岛蓝色经济区和黄河三角洲高效生态经济区的交迭地带,区位优势明显。地面沉降灾害的发生对该区规划建设和港口防潮堤高程构成了威胁,因此,全面了解该区地面沉降的发育特征,尤其是掌握地面沉降的主要影响因素极其重要。前人在不同时段内应用GPS和水准测量方法对该区局部地段地面沉降开展了相应研究,但未对全区地面沉降状况进行分析评价,尚不能有效支撑区域规划建设及地面沉降防控管理。文章在前人研究基础上,基于PSInSAR遥感技术分析了该区地面沉降速率及其变化状况,并与水准测量成果进行了对比。认为多年来该区地面沉降现象明显,超过75%的区域发生了不同程度的地面沉降,在寿光-广饶交界处、寿光-滨海开发区北部、寿光城区西北部和昌邑-滨海开发区北部等存在多个显著片区,且多年变化总体呈现加重趋势;区内存在16个沉降中心,最大沉降速率达到29~168 mm/a,沉降速率超过40 mm/a的占比达到62%以上,主要分布于研究区西部和西北部;该区地面沉降受区域构造、地层结构、地下水开采和地面荷载等因素影响,其中地下水开采是区域地面沉降发生的主致因素,地面荷载加强了局部地段的不均匀沉降程度,区域构造和地层结构为地面沉降发育和加剧提供了地质背景条件。  相似文献   

18.
为了对河北省承德市滦平县张百湾镇周台子村铁矿区进行形变调查和监测,消除安全隐患,在时序CSInSAR(相干散射体InSAR)技术的基础上,开发了48景Sentinel1数据的DSCSInSAR(融合分布式散射体和相干散射体InSAR)技术。该方法首先采用AD (Anderson Darling)检验对同质像素点进行识别,然后基于协方差矩阵特征值分解算法对最优相位进行估计,最终通过时序形变解算得到铁矿区的地表形变结果。研究结果表明:研究区的年平均形变速率范围为-34.50~24.50 mm/a;大部分矿区都存在不同程度的沉降,其中周台子村和路边附近矿区沉降量较大,窑岭沟矿区出现明显抬升现象,最大沉降量和最大抬升量分别达到了34.00和24.03 mm,其形变结果与当地4个GPS监测点结果一致。与CSInSAR技术相比,DS CSInSAR技术极大提高了目标点的密度和干涉图的质量。  相似文献   

19.
辽宁省盘锦市具有丰富的石油、天然气、煤等矿产资源,由于油气开发及南部沿海区域因海水入侵地下水开采持续增长等影响,导致该地区地面沉降明显。为掌握和分析该市地表形变的变化特征,本文利用2007~2011年间22景L波段的ALOS/PALSAR数据,采用PS-InSAR技术对其进行了地面沉降监测。从得到的年沉降速率图和沉降中心的时间序列图可知,盘锦市地面沉降主要分布在城镇、油田开采区以及沿海区域。四年间,最大年沉降速率达194mm/a,经调查发现主要是因该区域油气开采所致;沿海地区的年沉降速率约为50mm/a。研究表明,盘锦地区的地面沉降与油气开采存在空间一致性,同时也证明PS-InSAR技术可用于长时间序列的地面沉降监测。  相似文献   

20.
为了准确模拟评价沧州市地下水开采对地面沉降的影响,为沧州市政规划和地下水资源管理提供决策依据,基于比奥固结理论,建立了地下水开采与地面沉降三维全耦合数学模型。在对模型进行识别和校正的基础上,模拟预测了在地下水现状开采情况下,从2010年12月31日至2025年12月31日逐年的地面沉降变化趋势,并根据地面沉降速率对地面沉降进行了地质灾害预警分区。结果表明,到2025年12月31日,沧州市累计最大地面沉降量为466.82 mm,最小地面沉降量为241.54 mm,大部分地区为四级预警区和五级预警区,仅肃宁县为三级预警区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号