首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
唐山沿海地区经济在迅速发展,沿海地区城市化规模在扩大,地下水开采量增大,地面沉降加剧.文中分析了唐山沿海地区的水文地质条件,概化为3个含水层、3个弱透水层,共6个压缩层.建立了三维地下水流和垂向一维压缩完全耦合模型.采用25a的观测资料校正模型,计算值与实测值拟合较好,模型具有较高的仿真性和适用性.预测了10a末的地面沉降;当地下水以现有开采量开采时,沉降中心累计达1192.3mm, 10a沉降352.3mm,沉降速率为35.23mma-1;当地下水的开采量在现有开采量的基础上增加10%时,沉降中心累计达1260.8mm, 10a沉降420.8mm,沉降速率为42.08mma-1; 当地下水的开采量在现有开采量的基础上减小10%时,沉降中心累计达1088.7mm, 10a沉降247.9mm,沉降速率为24.79mma-1.增大10%的地下水开采量, 10a地面沉降量增加68.5mm;减少10%的地下水开采量, 10a地面沉降量减少104.4mm.因此,控制地下水开采量是控制地面沉降的有效方法.  相似文献   

2.
利用覆盖南京市2007—2011年共17景ALOS PALSAR影像,通过短基线方法(SBAS)对研究区进行地面沉降监测,获取了时间形变特征、累积沉降量和年平均沉降速率,研究区平均沉降速率最大达-49.3 mm/a。在此基础上,通过搜集的南京市9个CORS点数据对SBAS结果进行验证,两者结果吻合度高,最大与最小偏差分别为4.4 mm/a和-4.6 mm/a,证明利用短基线方法在南京这种以平原地貌为主的地区进行地面沉降监测是可行的。  相似文献   

3.
温岭市西部平原地面沉降特征及防治对策   总被引:1,自引:0,他引:1  
温岭市西部平原是经济活动最为活跃的地区.近20年以来,随着地下水开采量的不断增大,引发了严重的地面沉降,本文通过对不同时期的地形高程对比,分析确定了地面沉降量等特征,研究表明温岭市西部平原始地面高程仅2.5~3.3m,近20年来累计最大沉降量已大于1300mm.已成为浙江省地面沉降最为严重的地区之一,地面沉降导致沉降区内部分民房和耕地被水淹,直接影响到当地群众的生活和生产,本文根据温岭市实际,提出了地面沉降的防治措施和对策。  相似文献   

4.
为掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19期C波段Radasat-2数据,采用SBAS-InSAR技术提取盘锦地区地面沉降速率和累积地面沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6km^2,最大沉降速率为-151.49mm/a;龙王村沉降区,面积约为33.28km^2,最大沉降速率为-119.55mm/a。与2007-2009年的3期ASAR数据得到的结果进行对比后发现,两者得到的沉降区基本一致。通过地面沉降监测数据的时序分析,累积沉降量和沉降区范围均随着时间不断增大。  相似文献   

5.
为了研究地面沉降的时空分布模式、机理机制,选择北京典型沉降区——潮白河冲洪积扇为研究区,采用PS-InSAR技术、莫兰指数及地理探测器,分析了研究区地面沉降的空间异质性特征,探测了不同特征下的地面沉降的主要驱动因素。结果表明:2017-01—2019-01研究区内地面沉降时空分布特征以一般沉降为主,沉降速率为[-133,3] mm/a,最大累积沉降量为261 mm,呈北部轻微、中部较严重、南部较轻的分布状态,其中,严重、极严重等级地面沉降主要分布在中游顺义后沙峪东部等地区及中下游交界地带的潞城镇;不同地区地面沉降呈现不同的空间异质性特征,即不均匀地面沉降分布特征明显,中游、下游均表现为低—低集聚;不同分布特征下地面沉降主要驱动因素不同,中游地区主要驱动因素为第二承压水水位变化和可压缩层厚度,下游主要驱动因素为浅层地下水水位变化和第一承压水水位变化。莫兰指数能够有效分析地面沉降空间异质性,识别集聚特征;地理探测器可以探明沉降空间异质性成因,获得其主要驱动因素。  相似文献   

6.
近几年,盘锦地区的地面沉降问题开始受到人们的关注。为了掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19景C波段Radarsat-2 SAR数据,采用SBAS-InSAR技术提取了盘锦地区地面沉降速率和累积沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6 km2,最大沉降速率为-151.49 mm·a-1;龙王村沉降区,面积约为33.28 km2,最大沉降速率为-119.55 mm·a-1。通过地表形变量时序分析,发现两个沉降区的范围随着时间不断扩大,累积沉降量不断增大。与水准监测数据进行对比后发现,两种监测方法得到的沉降区范围和沉降量大体一致,但两者间仍有差别。对研究区内油田井场分布和地下水水位降落漏斗特征与沉降区分布进行了对比分析,研究表明地面沉降与地下水开采、油气资源开采、新构造运动等多种因素具有密切关系。研究结果将为地质环境的管理、地面沉降灾害的防治及资源开发利用规划提供基础依据。  相似文献   

7.
豫北平原是河南省平原地区地面沉降灾害较严重地区之一,快速全面掌握豫北平原地面沉降信息、有效防控地面沉降的持续快速发展对中原城市群建设至关重要。本文借助中高分辨率RADARSAT-2雷达数据,基于SBAS-InSAR技术获取了豫北平原2014-2016年的地面沉降监测数据。监测结果表明:两年内豫北平原地面整体下沉,区内共圈定8个较明显的沉降区,总面积约3 006 km2,各沉降区沉降速率在25.00~114.85 mm/a之间;其中,除安阳县白壁镇-内黄县沉降区和辉县沉降区最大沉降速率分别达到95.36和114.85 mm/a之外,其余6个沉降区最大沉降速率均小于73.58 mm/a。根据沉降区现场实地调查和综合分析发现,豫北平原地面沉降主要是活动断裂、松软岩土、地下水超采、城市建设活动、石油和地热资源开采等共同作用的结果。建议将豫北平原地面沉降的防控重点放在人类活动引起的地下水超采和城市建设引发的松软岩土层超量堆载等方面。  相似文献   

8.
近年来皖北平原地区地面沉降问题相对突出,区域地面沉降驱动力的量化研究尚且匮乏。为深入研究沉降灾害的发育特征,文章以亳州市为例,基于62景Sentinel-1数据,利用SBAS-InSAR技术获取2021年10月至2022年10月期间地面沉降的时空分布特征,并结合地理加权回归模型对亳州市地面沉降主要驱动力进行探讨。研究结果表明:(1)亳州市主体沉降速率为5~30 mm/a,平均沉降速率为5.7 mm/a。(2)最严重沉降区位于涡阳县公吉寺镇北侧,幅值为84.3 mm/a,沉降主要受煤矿开采所致;非采煤沉降区,最大沉降速率为25.8 mm/a,位于谯城区东北侧。(3)各驱动力因素对地面沉降的贡献度从大到小排序为深层水位变幅、中深层水位变幅、中深层地下水埋深、深层地下水埋深、单位面积GDP、松散层厚度、道路密度、人口密度。研究结果可为地质灾害防治提供基础数据支撑。  相似文献   

9.
韩彦霞 《地下水》2012,(2):82-84
河北省沧州市多年来由于严重超采深层地下水,形成水位降落漏斗,中心埋深已近100 m,造成地面发生沉降。地面沉降于1970年开始出现,当时沉降量只有9 mm,但到2001年底,沉降中心累计已沉降到2 236mm。地面沉降导致城市内涝积水、危害水利防洪工程、埙坏建筑物、管道变形断裂、发生地裂缝、风暴潮危害进一步加重、浅层地下水位抬高引起环境恶化等问题。对地面沉降应采取积极、行之有效、经济上合理、技术上可行的防治措施,为子孙后代留下一个美好的家园。  相似文献   

10.
地面沉降是福州市的主要地质灾害之一,自20世纪中期以来就有监测资料显示福州市存在地面沉降问题。本文基于永久散射体雷达干涉测量技术(IPTA),处理了福州市2008~2014年间多时相、高分辨率TerraSAR-X数据,对福州市6年时间的地面沉降进行监测分析,根据研究区地面沉降历史、建设发展现状及沉降异常区分布,着重分析了复杂因素影响下福州市地面沉降的时空变化规律。结果表明:福州市总体年均沉降率-15 mm ·a-1左右,存在多个明显的快速沉降区;与1960~1990年的监测资料对比发现,沉降中心由地热温泉区向工程密集建设区转移;较大沉降区以快速线性沉降为主;地面沉降特征的变化受到多种复杂因素叠加影响,导致地面沉降空间扩张、速率加剧。该研究成果可为福州市或其他沿海城市地面沉降风险评估、地面沉降防控等提供一定的科学依据和参考。  相似文献   

11.
为了准确预测由高层建筑引发土体应力场和渗流场变化而导致的地面沉降,以比奥固结理论为基础,结合土体非线性流变理论,将比奥固结理论中的本构关系拓展到黏弹塑性,并考虑了土体孔隙度、渗透系数及变形参数随有效应力的动态变化关系。以河北省沧州市为例,建立了沧州市高层建筑荷载、地下水渗流与土体变形三维流固全耦合数学模型。在对模型进行识别、验证的基础上,模拟预测了沧州市在地下水停采、仅存在高层建筑荷载的影响下,从2010年12月底到2025年12月底逐年的各含水层组地下水流场变化特征和地面沉降发展趋势。结果表明:沧州市由高层建筑荷载引发的最大地面沉降量为40.57 mm,最大地面沉降速率为2.7 mm/a,位于沧州市区。  相似文献   

12.
刘勇  李培英  丰爱平  黄海军 《地球科学》2014,39(11):1555-1565
为了分析黄河三角洲地下水动态及其与地面沉降的关系, 利用多年地下水和地面沉降监测数据, 发现黄河三角洲广饶县和东营区的地下水动态变化剧烈且地面沉降严重, 含水层多处于超采状态, 浅、深层地下水降落漏斗先后出现.深层地下水降落漏斗中心水位下降速度达2~3m/a.近年来, 东营和广饶地面沉降漏斗中心沉降量和速率分别为155.1mm、28.2mm/a和356.0mm、64.7mm/a.借助GIS技术及数理统计法, 发现深层地下水降落漏斗与沉降漏斗空间耦合良好, 深层地下水位与地面高程呈线性正相关, 相关系数为0.92, 深层地下水过度开采已成为影响沉降的最根本因素.井灌区第三粘性压缩层成为地面沉降主要贡献层, 且深层地下水降落漏斗中心的地下水位已低于第三承压含水层临界水位, 沉降趋于严重.   相似文献   

13.
研究区位于山东半岛蓝色经济区和黄河三角洲高效生态经济区的交迭地带,区位优势明显。地面沉降灾害的发生对该区规划建设和港口防潮堤高程构成了威胁,因此,全面了解该区地面沉降的发育特征,尤其是掌握地面沉降的主要影响因素极其重要。前人在不同时段内应用GPS和水准测量方法对该区局部地段地面沉降开展了相应研究,但未对全区地面沉降状况进行分析评价,尚不能有效支撑区域规划建设及地面沉降防控管理。文章在前人研究基础上,基于PSInSAR遥感技术分析了该区地面沉降速率及其变化状况,并与水准测量成果进行了对比。认为多年来该区地面沉降现象明显,超过75%的区域发生了不同程度的地面沉降,在寿光-广饶交界处、寿光-滨海开发区北部、寿光城区西北部和昌邑-滨海开发区北部等存在多个显著片区,且多年变化总体呈现加重趋势;区内存在16个沉降中心,最大沉降速率达到29~168 mm/a,沉降速率超过40 mm/a的占比达到62%以上,主要分布于研究区西部和西北部;该区地面沉降受区域构造、地层结构、地下水开采和地面荷载等因素影响,其中地下水开采是区域地面沉降发生的主致因素,地面荷载加强了局部地段的不均匀沉降程度,区域构造和地层结构为地面沉降发育和加剧提供了地质背景条件。  相似文献   

14.
北京平原区快速发展的地面沉降对高速铁路的发展构成了威胁,地面沉降与过量开采地下水造成的水位下降关系密切,为此有针对性地开展基于高速铁路的地下水动态与地面沉降相关关系研究对于高铁安全运行意义重大,特别是对于制定高铁沿线地下水开采方案、地面沉降减缓措施和工程措施至关重要。基于其对高速铁路的影响模式,本文将地面沉降分为区域沉降和局部沉降两种类型。针对区域沉降,利用Logistic方程,使用天竺、望京及王四营分层地面沉降和地下水位数据,构建了不同层位地下水水位变化与地面沉降之间的相关关系模型,通过ABAQUS计算局部地区,对于6m高路堤和15m CFG桩处理深度的地基而言,当渗透系数k=2m/d,距离线路边缘25m处浅层地下水下降10m将产生约61—85mm的沉降。  相似文献   

15.
为了准确模拟评价沧州市地下水开采对地面沉降的影响,为沧州市政规划和地下水资源管理提供决策依据,基于比奥固结理论,建立了地下水开采与地面沉降三维全耦合数学模型。在对模型进行识别和校正的基础上,模拟预测了在地下水现状开采情况下,从2010年12月31日至2025年12月31日逐年的地面沉降变化趋势,并根据地面沉降速率对地面沉降进行了地质灾害预警分区。结果表明,到2025年12月31日,沧州市累计最大地面沉降量为466.82 mm,最小地面沉降量为241.54 mm,大部分地区为四级预警区和五级预警区,仅肃宁县为三级预警区。  相似文献   

16.
北京平原区地面沉降分布特征及影响因素   总被引:3,自引:1,他引:2       下载免费PDF全文
地面沉降是北京平原区主要地质灾害之一。文中采用永久散射体差分干涉测量(PS-InSAR)技术获取平原区地面沉降空间分布特征,基于GIS空间分析平台,将多种地面沉降影响因素分别与PS-InSAR获取的地面沉降场形变信息进行耦合研究,查明地面沉降与多种影响因素之间的响应关系。研究发现:(1)北京市地面沉降发育较为严重的地区主要出现在平原区东部、北部以及南部等地,存在多个沉降中心,最大沉降速率达到152mm/a,区域不均匀沉降现象明显,并且有连成一片的趋势。(2)地面沉降分布具有明显的构造控制特性,沉降区多位于几大活动断裂交接部位的沉积凹陷地区,与第四纪沉积凹陷十分吻合。地面沉降的发展趋势与活动断裂的走向具有明显的对应关系,在有活动断裂通过的区域,地面沉降剖面线上表现出明显的转折或突变,断裂两侧区域不均匀沉降十分明显。(3)地面沉降分层沉降量与对应层位上黏性土占比呈正比例关系,其空间分布特征及变化趋势与平原区的地层结构及可压缩黏性土层厚度具有很好的一致性,沉降范围整体由北西向的单一结构区向南东方向的多层结构区扩张。沉降速率大于50 mm/a的沉降区大多分布在黏性土层厚度大于100 m的地区,几大沉降中心与黏性土层厚度较大地区吻合较好。(4)第二承压含水层(顶底板埋深100~180 m)地下水开采对地面沉降影响最大,沉降中心与该层位地下水位降落漏斗区高度吻合,是地面沉降的主要贡献层位。  相似文献   

17.
山东省德州市地面沉降具有发展历史久、沉降量大、分布范围广、持续发展等特征,地面沉降防治工作形势紧迫。为分析《山东省德州市地面沉降防治规划(2018—2025年)》控沉目标如期实现的可能性,以德州市地面沉降现状及现有防治手段为基础,通过区域地面沉降速率公式量化计算及中心沉降速率预测进行控沉目标可行性分析。结果表明,在最严格的水资源管理制度条件下,控沉目标可以实现。针对地面沉降防治存在的问题,如地面沉降监测手段及监测频率有待提高、防治经费缺乏保障、地面沉降成因机理研究不深入、治理欠缺等,从管理和技术两方面出发,提出了包括健全监测网络、控采地下水、加大地面沉降知识宣传等控沉建议。该研究可为德州市切实有效进行地面沉降防治工作提供参考。  相似文献   

18.
The land subsidence in Dezhou of Shandong Province has a long history with the characteristics of large amount, wide distribution and ongoing development. The prevention and control situation of land subsidence is becoming urgent. In order to analyze the possibility of realizing the goal in Subsidence Control Program in Dezhou, Shandong Province (from 2018 to 2025) on schedule, based on the current situation of land subsidence in Dezhou and the existing prevention and control means, the authors analyzed the subsidence control target feasibility through the quantitative calculation of regional subsidence rate formulas and the prediction of central subsidence rate. The analysis results show that under the strictest water resource management system, the subsidence control goal could be realized. At present, there are some problems in the prevention and control of land subsidence, for example, the monitoring means and frequency of land subsidence need to be improved, the prevention and control funds is lack of guarantee, and the subsidence mechanism research and govemance is still not enough. Then from the aspects of governance and technology, the authors put forward some suggestions, including improving the monitoring network, controlling the exploitation of groundwater, and expanding the propaganda of land subsidence knowledge. The study can provide some reference for the effective prevention and control of land subsidence in Dezhou.  相似文献   

19.
天津平原地下水可开采量与确定依据   总被引:4,自引:0,他引:4       下载免费PDF全文
根据深层地下水开采对地面沉降的影响比较,天津中部平原和滨海平原第二、三含水层组深层地下水开采对地面沉降影响较小,为适宜开采层位。地面沉降控制在10 mm/a,第二、三含水层组深层地下水可开采量为2.68亿m3/a。中部平原浅层地下淡水、微咸水,在技术经济上鼓励开采,可开采量为1.64亿m3/a;山前平原地下水现状开采强度未引起明显的环境地质问题,开采强度适当,可开采量为2.79亿m3/a。天津平原生态环境保持良好,地下水总的可开采量为7.11亿m3/a。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号