首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
混酸溶解矿石样品,在酒石酸介质中,用电感耦合等离子体发生光谱法(ICP-AES)测定溶液中的铌钽。该方法ρ(Nb2O5)和ρ(Ta2O5)在0~20 μg/mL时,铌钽原子发射光谱强度与浓度呈良好的直线关系,Nb、Ta标准曲线相关系数尺分别为0.999 9和0.999 7。检出限分别为0.023 μg/mL和0.072 μg/mL。本方法测定标准样品,测定值与认定值相符。对实际样品分析,Nh、Ta的相对标准偏差(n=6)分别为0.42%~2.3%和1.8%~3.3%,加标回收率均为97%~103%,适合地质找矿、选冶等领域的样品测试。  相似文献   

2.
发射光谱深孔大电极法测定硼、锡、银   总被引:2,自引:0,他引:2  
张庆华  万飞  杨婷 《吉林地质》2009,28(2):110-112
以Al2O3、NaF和K2S2O7作为缓冲剂,以Ge为内标,与样品研磨混匀,装入石墨深孔大电极中作为样品电极,石墨电极平头柱形空腔为上电极,样品电极为下电极进行摄谱,由光电译谱仪测定谱线的黑度值。用发射光谱法深孔大电极一次性摄谱,对农业地质样品中硼、锡、银的测定,经过反复实验取得了较好的效果。本法测定了国家一级标准物质,结果与标准值相符。本法灵敏度高,背景浅,能满足多目标地质样品分析的要求。  相似文献   

3.
以Al2O3、K2S2O7、NaF、C作为缓冲剂与样品混匀,装入石墨电极中,以平头石墨电极为上电极,样品电极为下电极进行摄谱,由光电译谱仪测定谱线的黑度值,以锗为内标用内标法测定样品中Cu、Pb、Zn、Co、Ag、Sn、Mo和B的质量分数。  相似文献   

4.
磁铁矿中磁性物成分的测定及可选性评价   总被引:3,自引:3,他引:0  
对磁铁矿样品分别用磁选管和手工内磁选法进行磁选,并对原矿样品和样品的磁性物中TFe、P、S、V2O5、TiO2、SiO2、Al2O3、CaO、MgO、Sn、Cu、Pb、Zn的含量进行测定.分析结果表明,采用手工内磁选和磁选管对磁铁矿进行磁选所得的结果一致,为了简便操作,本文均采用手工内磁选法选出磁性物.A矿区磁性铁(mFe)含量(22.42%)比B矿区mFe含量(22.59%)低,但A矿区样品的磁性物中TFe含量(磁铁精矿品位)大于66%,比B矿区样品的磁性物中TFe含量(小于57%)高,A矿区的磁铁矿选矿效果明显好于B矿区,说明对磁性物中TFe含量的测定能够更好地反映矿石的可选性.原矿样品中P、S的含量分别为0.328%、0.271%,而样品的磁性物中P、S的含量为0.021%、<0.005%,均达到铁矿石冶炼标准;原矿样品中V2O5、TiO2的含量分别为0.156%、1.37%,而样品的磁性物中V2O5、TiO2含量分别为0.823%、13.62%,达到了铁矿石冶炼标准.原矿样品的(CaO+MgO)/(SiO2 +Al2O3)值为0.876,为自熔性矿石,而其磁性物的(CaO+ MgO)/(SiO2+Al2O3)值为0.453,为酸性矿石.由此说明,单纯测定原矿样品中的各成分尚不能对磁铁矿的可选性进行科学性评价,只有进一步测定磁铁矿的磁性物中各成分的含量,才能够对磁铁矿进行可靠的评价.本文通过对磁铁矿中磁性物成分的测定,为磁铁矿的选冶性能提供了新的评价方法.  相似文献   

5.
碳酸岩样品中由于CaO的辐射背景深而影响了许多元素的测定。本法针对碳酸岩样品的组份,在缓冲剂中加入大量的SiO_2(石英粉)稀释样品,从而消除了CaO对测定Ag、Sn、B等的影响。 实验部分 一、CaO对谱线强度的影响 据资料介绍,样品中CaO的含量或CaO/SiO-2的比值和谱线强度的减弱有线性关系。在本体系中,CaO的影响如图所示。当样品与缓冲剂的混合物中CaO含量低于10%时,Ag、Sn和B的谱线强度无明显减弱,而当混合物中CaO含量超过10%时,Ag、Sn的谱线强度急剧减弱,且光谱背景逐  相似文献   

6.
样品逐级破碎、逐级缩分后,试样的粒度与保留试样量之间都应遵循切乔特公式Q≥Kd^2。对红土型镍矿的K值试验,统计缩分样品检测结果在95%的置信度下,分析数据不可疑值、测量值之间无系统误差,测量结果(n=16)相对标准偏差小于5%。单次测定结果与平均结果的测量误差均小于允许误差。  相似文献   

7.
在原子荧光光谱法传统样品前处理的基础上,提出了悬浮液进样技术。用琼脂作为悬浮剂,水溶液作为校正曲线,对土壤标准样品和实际样品进行测定,结果令人满意,并且省去了冗长的样品化学前处理过程。检出限分别为砷0.33μg/L、锑0.13μg/L、硒0.06μg/L;相对标准偏差分别为:砷3.92%~6.32%、锑1.76%~3.11%、硒3.08%~5.54%;回收率分别为砷98.7%~105.7%、锑99.5%-103.3%和硒94.6%-107.2%。国家一级标准物质的测定结果与标准值相符,实际样品的测定值与传统消化法相比较,结果基本一致。  相似文献   

8.
本文介绍了一种在铁载体存在下,用H2O2/NaOH以氢气氧化物分离铀后,用电感耦合等离子体原子发射光谱法(ICP-AES)测定富铀地质样品(铀含量<>0.1%)和沥青铀矿类样品中的钇,钪和其他稀土元素和快速方法,铀以可深性过铀酸盐络合物进入溶液,将沉淀的稀土氢氧化物(包括Y和Sc)过滤,并溶于HCl中,再吸入等离子体,选择无干扰的REE发射变线后,进行各元素的测定,该法已应用于某些国际参考标准如SY-2和SY-3(掺入知量的铀)以及一个内部和沥青铀矿样品,发现REE值与最稳定值一致,所有REE,Y和Sc的RSD为1%-8.8%,该法可与确定良好的阳离子交换分离法比拟。  相似文献   

9.
本文研究了等离子体质谱法在地质样品铅同位素比测定上的应用。对仪器的质量歧视效应进行了观察和讨论,并对比了它的两种校正方法。溶样方法对某些样品的同位素比测定结果影响较大,应根据地质研究的要求选择溶样方法。铅同位素比的测量精度(RSD)一般为0.1-1%;与TIMS值的相对偏差为0.1-2%。分析一个样品的时间平均约8分钟。  相似文献   

10.
化探样品微量银的光谱测定   总被引:2,自引:0,他引:2  
采用氯化镉、氯化氨作反应剂,以背景为内标,在WSP-1型平面光栅摄谱仪上摄谱进行化探样品中微量银的测定。方法线性范围为0.02—5.0μg/ml,6次测定相对偏差为1.68%-3.39%,测定值与推荐值基本相符,能满足化探样品中痕量Ag的分析要求。  相似文献   

11.
对于总氮和总磷的测定,国家标准HJ636—2012和GB11893—89规定总氮用碱性过硫酸钾消解,紫外分光光度法测定,总磷用中性过硫酸钾消解,分光光度法测定,两种方法分别取样、消解,分析效率低。本文对国家标准方法进行改进,建立了在一份样品中用过硫酸钾作为氧化剂一次消解,分光光度法联合测定树干茎流液中总氮、总磷含量的方法。样品中的含氮化合物在碱性过硫酸钾溶液中,在高温下氧化分解转化为硝酸盐氮(NO-3-N),其吸光度与总氮浓度成正比;含磷化合物在酸性过硫酸钾溶液中,在高温下氧化分解转化成正磷酸盐(PO3-4-P),其吸光度与正磷酸盐浓度成正比。经实际样品验证,方法精密度(RSD,n=5)为总氮2%,总磷4%,加标回收率为98.0%~104.2%(总氮)和94.0%~107.0%(总磷)。本方法将国家标准方法中配制两条标准系列、两次高压消解改进为配制一条标准系列、一次消解,可以节省50%的样品使用量,且提高了分析效率。由于有机质含量较高时,在本法条件下样品不易消解清亮,影响总氮、总磷的测定,该方法适用于有机质含量较低的树干茎流样品分析。  相似文献   

12.
自动电位滴定测定锰矿石中锰的方法研究   总被引:3,自引:3,他引:0  
多批次的锰矿石锰含量滴定分析消耗大量人工,随着自动化电位滴定仪的普及,利用仪器完成容量滴定成为可能,而将手工滴定向自动电位滴定移植是当前需要解决的课题。本文建立了一套自动电位滴定仪测定锰矿石中锰含量的方法,确定了相关滴定参数和等当点识别标准。锰矿石样品采用盐酸、磷酸分解,硝酸去除碳和有机物,高氯酸氧化,形成样品溶液。自动电位滴定仪先用硫酸亚铁铵标准溶液对预先移取的重铬酸钾标准溶液和标定空白溶液分别进行氧化还原滴定,用铂复合电极指示,计算得到硫酸亚铁铵标准溶液浓度,再对样品空白溶液和样品溶液进行氧化还原滴定,得到样品锰含量,方法检测范围为5%~60%。采用本法分析国家一级标准物质,测定结果的准确度和精密度高;分析多个产地不同水平的锰矿石样品,测定结果与手工方法进行对照,经t检验无显著性差异。建立的滴定方法自动化程度高、方法稳健,适用于冶炼企业、港口商检等行业,具有推广价值。  相似文献   

13.
建立了高温燃烧红外碳硫仪测定重铀酸盐中硫质量分数的分析方法。样品以五氧化二钒为助熔剂,在高温炉燃烧后,用红外吸收测定重铀酸盐中的硫,样品分析重现性好,精密度高,相对标准偏差为0.26%;样品加标回收率在97.1%~103%之间。  相似文献   

14.
极谱法测定钼矿石中的总钼氧化钼硫化钼   总被引:1,自引:0,他引:1  
薛静 《岩矿测试》2012,31(6):989-991
钼的物相分析要求测定硫化矿物相和氧化矿物相,常用比色法和电感耦合等离子体发射光谱法等对辉钼矿、钼华矿、钼钨钙矿、钼酸铅矿等钼矿石进行物相分析,但分离物相的品种较多,方法繁琐耗时.本文用王水-硫酸消解钼矿石样品,碱溶液复溶浸提得到钼总量,使其他大多数元素形成沉淀而分离,用碳酸钠-氢氧化铵混合溶液浸取钼的氧化矿物,将残渣进一步溶解得到硫化矿物含量,在硫酸-氯酸钾-二苯羟乙酸体系中用极谱法简单快速测定钼总量、氧化钼和硫化钼含量.方法的线性范围为0.04~0.4 mg/L,检出限为0.028 mg/L.对三种钼矿样品进行物相分析,氧化矿物与硫化矿物含量的加和与钼总量相当;总钼、氧化钼、硫化钼测定结果的相对标准偏差在1.69% ~3.56%之间,与比色法测定结果相符.方法实用快速,易于推广,适于实际批量样品的测试.  相似文献   

15.
能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜   总被引:1,自引:1,他引:0  
田文辉  王中岐  张敏 《岩矿测试》2008,27(3):235-236
建立了能量色散X射线荧光光谱法测定钼矿石中钼、铅、铁、铜的方法,讨论了粒度效应、矿物效应的影响因素,确定了采取粉末样品,用系列标准样品建立工作曲线,通过元素间相互校正消除基体效应,用内控标准样品考察了方法的精密度(RSD,n=11)为0.44%~15.4%。实际样品的测定结果和化学法相符,可满足日常分析工作需要。  相似文献   

16.
改进了游离二氧化硅(fSiO2)测定中试样的分解方法,采用硫-磷混酸替代单独使用磷酸分解试样,防止了焦磷酸盐的形成,同时,氟硼酸对fSiO2的溶解率符合测定要求。改进的方法用于标准物质中fSiO2的测定,结果与标准值或磷酸溶矿重量法相符。对于ω(fSiO2)=3.26%的标样10次测定的RSD为2.4%。  相似文献   

17.
李强  张学华 《岩矿测试》2013,32(5):724-728
便携式X射线荧光光谱仪可以快速进行多元素实时分析,在富钴结壳资源勘查中有广阔的应用前景,但是现有仪器的分辨率和稳定性有待进一步提高,特别是现场原位分析法的应用有待研究。本文针对富钴结壳中目标元素含量相对较高的特点,采用松散粉末法制样,建立了手持式X射线荧光光谱仪快速测定太平洋富钴结壳样品中Mn、Fe、Co、Ni、Cu和Zn的分析方法。该方法用多金属结核和富钴结壳国家标准物质进行验证,测定值的相对标准偏差(RSD)在0.2%~3.0%之间,测定值与标准值的相对误差为92.9%~107.6%。样品现场分析和实验室分析的数据对比表明,除了低含量Cu略有超差外,Mn、Fe、Co、Ni、Zn和品位均无超差,完全满足该类矿产资源勘查规程的要求。本法简单、高效,适用于对野外富钴结壳资源作出快速的初步评价。  相似文献   

18.
杜梅  刘晓杰 《岩矿测试》2014,33(2):218-223
包头矿中的稀土总量根据提取稀土的工艺流程,含量范围为0.0x%~0.x%。对于高含量稀土总量(20%~80%)的测定,国家标准采用草酸盐重量法,但该方法分离干扰元素的步骤多,流程长。应用电感耦合等离子体发射光谱法不需复杂的分离步骤即可测定稀土元素,但由于受到精密度的限制,测定高含量稀土总量的波动范围较大,不易得到准确结果。本文针对包头稀土矿组成复杂、酸溶难于分解的情况,建立了应用碱熔处理样品,电感耦合等离子体发射光谱(ICP-AES)测定稀土总量的方法。用氢氧化钠、过氧化钠溶解样品,水提取熔融物,各种元素以离子或氢氧化物形式进入溶液,过滤除去铝、硅、磷等杂质元素及大量的钠盐,减小了基体元素及共存元素的干扰;以钪为内标校正仪器波动及基体效应的影响,无需基体匹配即可测定稀土总量。对于稀土总量在30%~50%的样品,相对标准偏差小于0.7%,对于稀土总量在2%的样品,相对标准偏差小于1.2%;各稀土元素回收率为98.0%~103.3%。本方法比国家标准方法简便,与文献中应用ICP-AES测定高含量稀土总量的方法相比精密度有很大改善,可快速准确地测定包头稀土矿中2%~50%的稀土总量。  相似文献   

19.
采用微波消解-电感耦合等离子体原子发射光谱法(ICP-OES)测定了不同食品中总硼的含量。对微波消解样品前处理条件和仪器参数进行了选择和优化。方法对硼元素的检出限为0.10 mg/kg。方法的精密度(RSD,n=6)为1.6%~6.8%;回收率为96.5%~104.0%。方法用于分析国家一级标准参考物质GBW 07605(茶叶)、GBW 08501(桃叶)、面粉与鱿鱼粉中的硼,测定值与标准值或参考值吻合。  相似文献   

20.
通过测定植物果实中的氮元素含量,能够掌握植物生长状况,为提高优质果实的产量提供重要信息。目前分析测试植物果实中全氮的方法为传统凯氏定氮法,主要步骤为消解、蒸馏和滴定,消解时间约90min,蒸馏滴定时间约10~20min,分析测定过程较为繁琐,容易产生人为误差,不适于大批量植物果实样品的分析检测。为了缩短植物果实样品全氮的分析测定时间、提高工作效率,避免人为误差以及解决消解过程中样品飞溅和白烟逸出的问题,本文使用石墨消解仪对样品进行消解,加入浓硫酸和催化剂并加盖回流塞,使用全自动定氮仪进行分析测定,消解过程中样品不发生损失,白烟不逸出,消解时间约50min,蒸馏时间约3min,试剂消耗量小,相对误差和相对标准偏差均小于5%。本文建立的方法能够满足实验室快速、准确检测大批量植物样品中全氮的分析需求,已在中国地质调查局地调招标项目和河北省农用地土壤污染状况详查项目中得到了应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号