首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 375 毫秒
1.
依据已有研究成果和最新调查资料, 在综述沙漠湖泊与高大沙山研究进展及存在问题的基础上, 深入探讨了巴丹吉林沙漠湖泊水的补给来源、补给模式及高大沙山的形成机理. 结果认为, 沙漠湖泊水和地下水的补给来源不是当地降水和周边雅布赖山-北大山的降水形成的地表洪水, 而是南部青藏高原(包括祁连山)现代大气降水、冰雪融水、高原湖水的远源补给. 补给模式为高原富含CO2气体和CaCO3的入渗水, 通过深大导水断裂通道形成的区域地下水流循环系统, 源源不断地自南向北运移到沙漠地带, 地下水在通过沙漠湖泊区弧形"叠瓦状"垂向导水构造断裂向上越流过程中被广泛分布的岩浆岩加热, 沿断层溢出地表形成湖泊群, 同时导致水中CO2的释放和CaCO3的沉积, 形成钙华体. 高大沙山的形成机理是深层地下热水向上越流补给了沙漠覆盖区, 在承压水头以下形成鼓丘状的沙漠地下水, 承压水头以上, 水蒸汽继续向上运移并被凝结在沙粒表面, 未被吸附凝结的热水蒸汽继续向上运移并被吸附在新沉积的沙粒表面, 形成湿砂层并接受更新的沙粒沉积, 如此反复循环, 则沙丘高度不断增加, 逐步形成高大的固定沙山.  相似文献   

2.
任伟  金胜 《现代地质》2011,25(6):1167-1173
巴丹吉林沙漠拥有世界罕见的高大沙山群。为了解巴丹吉林高大沙山结构与成因,应用音频大地电磁法进行测量,利用非线性共轭梯度法二维反演得到了沙山的横截电性剖面。沙山电性剖面深部呈现明显的低阻,而沙山中部存在一定规模高阻区域。判断巴丹吉林沙漠众多高大沙山群的形成是由其稳定的西北风作用、源源不断的地下水补给机制和特殊的地层环境共同作用的结果。地下水由于蒸腾作用上升遇到古老沙丘的钙质层阻挡,由背风坡底部蒸发出来。水蒸气凝结在顶部滚落的沙子表面,使其抗风蚀能力增强,起到固沙作用;随着时间推移,沙山越来越大,形成高大沙山。  相似文献   

3.
丁宏伟  郭瑞  田刚  康亮  尹政 《甘肃地质》2015,24(2):9-17
依据前人研究成果和最新调查测试资料,深入探讨了巴丹吉林沙漠湖泊水的补给来源、补给模式及高大沙山的形成机理。认为沙漠湖泊水和地下水的补给来源不是当地降水和周边雅布赖山—北大山的降水形成的地表洪水,而是南部青藏高原(包括祁连山)现代大气降水、冰雪融水、高原湖水的远源补给。补给模式为:高原富含CO2气体和Ca CO3的入渗水,通过深大导水断裂通道形成的区域地下水流循环系统,源源不断地自南向北运移到沙漠地带。地下水在通过沙漠湖泊区弧形"叠瓦状"垂向导水构造断裂向上越流过程中被广泛分布的岩浆岩加热,沿断层溢出地表形成湖泊群,同时导致水中CO2的释放和Ca CO3的沉积,形成钙华、钙质根管和钙质胶结层。高大沙山的形成机理是:深层地下热水向上越流补给了沙漠覆盖区,在承压水头以下形成鼓丘状的沙漠地下水,承压水头以上,水蒸气继续向上运移并被凝结在沙粒表面,未被吸附凝结的热水蒸气继续向上运移并被吸附在新沉积的沙粒表面,形成湿砂层并接受更新的沙粒沉积。如此反复循环,则沙丘高度不断增加,逐步形成高大的固定沙山。  相似文献   

4.
巴丹吉林沙漠地下水与湖泊的相互作用   总被引:3,自引:0,他引:3  
巴丹吉林沙漠以其独特的沙丘湖泊景观而受到关注。地下水对湖泊的强烈蒸散耗水起到了支撑作用,而湖泊群的存在反过来也会影响该沙漠的区域地下水循环模式。在区域尺度上,银根-额济纳旗中生代盆地对巴丹吉林沙漠的水文地质特征具有控制作用。通过水文地质调查和典型湖泊的综合观测,表明沙漠湖水的年蒸发量可以达到1 200~1 550 mm,盐湖形成时间达到千年尺度,本地降水入渗形成的浅层地下水和来自沙漠周边地区的深层地下水对湖水都有贡献。地下水总体上自东向西流动并受到湖泊群的干扰,形成了局部地下水系统与区域地下水系统的嵌套结构。越靠近沙漠东侧,区域侧向径流对湖泊的补给贡献越大,反之则浅层地下水循环对湖泊的补给贡献更大。  相似文献   

5.
巴丹吉林沙漠地区钙质胶结层的发现及其古气候意义   总被引:17,自引:5,他引:12  
杨小平 《第四纪研究》2000,20(3):295-295
前人的考察研究表明,位于阿拉善高原西部的巴丹吉林沙漠是我国的第三大沙漠,面积近50000kin’。该沙漠的突出特征是高大沙山密集分布,200~300m高的抄丘常见,个别沙山可达500m。整个沙漠地区以流动沙丘为主,沙丘上出现稀疏的喜砂植物。高大沙丘之间有封闭的小湖泊,特别在沙漠的东南部地区湖泊集中分布。但从地理位置来讲,本地区离东南季风的北缘较近,又处于全球西风环流的纬度上。为什么这里的沙丘如此高大,沙漠中的湖泊形成的原因是什么?这样一个流动沙丘密集的沙漠在第四纪曾经历了哪些变化?为了进一步摸清该沙漠的自然地理特征,探索中亚干旱地区对全球变化的响应等问题,朱震达、JuergenHocverma  相似文献   

6.
通过对巴丹吉林沙漠东南部湖水和南缘地区地下水离子化学成分及其环境同位素分析,初步探讨了沙漠地区湖水和地下水之间补给的关系。沙漠湖水的离子化学特征显示沙漠东南部湖泊的演化趋势:微咸湖-咸水湖-盐水湖。显著不同的盐度、CO32-和HCO3-含量以及地质资料都表明,沙漠北部较大的湖泊和东南部的湖泊被一地形上的褶皱隆起阻隔而形成了不同的地下水补给体系。环境同位素的分析结果表明,巴丹吉林沙漠东南部的湖泊和地下水与沙漠东南边缘地区的地下水有着相似的蒸发趋势,暗示南缘地区的地下水和沙漠东南部地区湖泊之间存在一定的联系。同其他干旱地区地下水的同位素结果进行对比显示,雅布赖地区和沙漠地区的地下水应该是埋深较浅的地下潜水。因本次研究结果不支持单一远源或者深层地下水补给的观点,故推断沙漠东南部地区以及南缘地区的地下水主要是当地雨量丰沛时期的降水及南缘低山降水下渗补给的。  相似文献   

7.
黄天明  庞忠和 《现代地质》2007,21(4):624-631
巴丹吉林沙漠位于我国西北部的阿拉善高原。近年来,许多中外学者应用天然水样及土壤水分的水化学、同位素等技术手段研究了该地区地下水补给及环境演化。基于这些研究,试图给出巴丹吉林沙漠和古日乃绿洲一个完整的二维地下水系统概念模型。巴丹吉林沙漠地下水在浅埋区和出露区蒸发,同时接受少量当地降水补给,其最终的排泄区是古日乃绿洲。巴丹吉林沙漠地下水垂向补给微弱,地下水很可能是更新世晚期至全新世早期周边的雅布赖山区降水径流及发源于祁连山的河流古河道补给的古水。在全新世中-晚期,地下水得到有限的降水补给,并且经受蒸发作用。随着千年尺度的气候转型,两千年以来,巴丹吉林沙漠干旱化加剧,正在经历地下水位下降、湖泊绿洲逐渐萎缩消亡的过程。  相似文献   

8.
巴丹吉林沙漠湖泊及其下游地下水同位素分析   总被引:31,自引:3,他引:31       下载免费PDF全文
本文通过环境同位素水化学等分析方法研究了祁连山北侧、龙首山、巴丹吉林沙漠、古日乃、拐子湖和额济纳盆地的泉水和井水的来源 ,揭示了巴丹吉林沙漠等下游地区的地下水来自于祁连山降水的补给 ,平均补给高程为 330 0m ,祁连山顶部存在大片裸露的灰岩地层 ,雪水融化后沿着喀斯特地层或山前大断裂补给到深部 ,穿过龙首山直接补给到巴丹吉林沙漠及其下游地区 ,在沙漠湖泊中发现的钙华与钙质胶结证明地下水经过了石灰岩地层 ,承压水通过越流补给到浅部含水层 ,通过蒸发量计算得到的地下水补给量接近 6× 10 8m3 /a,承压水中地下水的年龄为 2 0~ 30a。  相似文献   

9.
2003年6月、9月和2004年5月三次深入巴丹吉林沙漠腹地,共考察了10多个不同的沙山和湖泊。观察到湖泊中心存在有泉眼的钙华,另有大片植物钙质胶结散落在干涸湖底。高大沙山沙层表面以下约20cm处为湿沙。对沙漠中的井水、上升泉水、湖水及周边相应地区不同性质的水样进行同位素地  相似文献   

10.
冲洪积物是古气候和古水文信息的重要记录,为了探讨巴丹吉林沙漠南缘地区全新世气候环境及其对区域地下水的影响,对沙漠南缘的水成沉积物进行了沉积学分析和光释光年代学测试,结果表明本文研究的两个沙漠南缘沉积剖面分别为全新世中期(6.6~5.2 ka)的间歇性河流沉积和暂时性流水形成的洪泛沉积.基于前人全新世中期沙漠中湖泊水位、气候环境重建,以及本文研究的冲洪积物的沉积特征与年代,表明在气候湿润的地质时期巴丹吉林沙漠南缘及山区的区域降水形成暂时性洪流和/或间歇性河流会对沙漠地区地下水进行补给.   相似文献   

11.
Despite its extreme aridity, the Badain Jaran Desert is rich in groundwater. In the southeastern part of the desert, it is characterized by coexistence of high megadunes and a great number of lakes. Deuterium and oxygen 18 isotope compositions as well as hydrochemistry of groundwater, lake water, soil water and river water were investigated in detail to gain an insight into their relationships and the origin of the ground-water. The results show that the groundwater and the lake water are genetically related, but unrelated to local precipitation and the leakage of Heine River at northern slope of Qilian mountain. δD and δ18O values of deep soil water (lower than 40 cm) and groundwater plot on the same evaporation line E11, which shows that they have the same recharge source. The point of intersection between E11 and LMWL suggests that the groundwater originates from the water resource which has a weighted mean value that is lighter by some 6‰ δ18O than the local precipitation in Badain Jaran Desert. 3H data of water samples shows that the groundwater in Badain Jaran Desert originates from the water recharged after the nuclear test. The deep fault zone underground maybe the water circulation channel based on Helium analysis of groundwater. The result has guiding significance to rational exploitation and utilization of the local groundwater.  相似文献   

12.
《China Geology》2021,4(3):421-432
The Badain Jaran Desert is the third largest desert in China, covering an area of 50000 km2. It lies in Northwest China, where the arid and rainless natural environment has a great impact on the climate, environment, and human living conditions. Based on the results of 1∶250000 regional hydrogeological surveys and previous researches, this study systematically investigates the circulation characteristics and resource properties of the groundwater as well as the evolution of the climate and ecological environment since the Quaternary in the Badain Jaran Desert by means of geophysical exploration, hydrogeological drilling, hydrogeochemistry, and isotopic tracing. The results are as follows. (1) The groundwater in the Badain Jaran Desert is mainly recharged through the infiltration of local precipitation and has poor renewability. The groundwater recharge in the desert was calculated to be 1.8684×108 m3/a using the water balance method. (2) The Badain Jaran Desert has experienced four humid stages since the Quaternary, namely MIS 13-15, MIS 5, MIS 3, and the Early–Middle Holocene, but the climate in the desert has shown a trend towards aridity overall. The average annual temperature in the Badain Jaran Desert has significantly increased in the past 50 years. In detail, it has increased by about 2.5°C, with a higher rate in the south than in the north. Meanwhile, the precipitation amount has shown high spatial variability and the climate has shown a warming-drying trend in the past 50 years. (3) The lakes in the hinterland of the Badain Jaran Desert continuously shrank during 1973–2015. However, the vegetation communities maintained a highly natural distribution during 2000–2016, with the vegetation cover has increased overall. Accordingly, the Badain Jaran Desert did not show any notable expansion in that period. This study deepens the understanding of groundwater circulation and the climate and ecological evolution in the Badain Jaran Desert. It will provide a scientific basis for the rational exploitation of the groundwater resources and the ecological protection and restoration in the Badain Jaran Desert.© 2021 China Geology Editorial Office.  相似文献   

13.
巴丹吉林沙漠季节冻土特征   总被引:1,自引:1,他引:0  
宁凯  王乃昂  胡文峰  张洵赫  孙杰  王旭 《冰川冻土》2015,37(5):1209-1216
通过巴丹吉林沙漠腹地连续的地温观测和2014年1月的专题考察,发现巴丹吉林沙漠属于季节冻土区,年冻结时间长达4个月.沙漠内部的局地地形和湖泊分布是影响季节冻土分布差异的重要因素.迎风坡和背风坡冻土冻结深度显著大于丘间地冻结深度,湖泊的存在使湖泊周边地区最大冻结深度显著变浅.通过沙漠及其周边地区地温、气温、地气温差的分析,结合我们在巴丹吉林沙漠外围发现的末次冰期砂楔群,表明我国北方沙漠在末次冰期属于不连续的多年冻土区.  相似文献   

14.
We present new estimates on evaporation and groundwater recharge in the Badain Jaran Desert, western Inner Mongolia of northwestern China, based on a modified Penman Equation suitable for lakes in China. Geochemical data and water balance calculations suggest that local rainfall makes a significant contribution to groundwater recharge and that past lake-level variations in this desert environment should reflect palaeoclimatic changes. The chronology of lake-level change, established by radiocarbon and U-series disequilibrium dating methods, indicates high lake levels and a wetter climate beginning at ca. 10 ka and lasting until the late mid-Holocene in the Badain Jaran Desert. The greatest extension of lakes in the inter-dune depressions indicates that the water availability was greatest during the mid-Holocene. Relicts of Neolithic tools and pottery of Qijia Culture (2400-1900 BC) suggest relatively intensive human activity in the Badain Jaran Desert during the early and middle Holocene, supporting our interpretation of a less harsh environment. Wetter climates during the Holocene were likely triggered by an intensified East Asian summer monsoon associated with strong insolation.  相似文献   

15.
巴丹吉林沙漠湖泊中的钙华和根状结核的存在证实这些沙丘和湖泊形成的时间约3万年,而且基本上没有发生大的改变。同位素和水化学研究结果证实湖泊水与祁连山深大断裂中的地下水有关,湖泊群正好位于阿尔金断裂东端,祁连山断裂与阿尔金断裂在玉门一带相交,祁连山断裂的地下水汇入阿尔金断裂后最终补到巴丹吉林沙漠的湖泊群中;而钙华与根状结核是地下水通过碳酸盐岩地层后形成的。   相似文献   

16.
The amount and timing of aquifer recharge and the evolution of lakes and groundwater in the south-eastern Badain Jaran desert of Inner Mongolia, with high megadunes, has been investigated using stable isotopes and hydrochemistry. Unsaturated zone moisture profiles down to 22 m have recorded recharge over 1185 years. Small but finite amounts of recharge are recorded with mean recharge rates of 0.95-1.33 mm year?1, determined using a chloride mass balance technique. The unsaturated profile also acts as a unique archive of hydrological and climate change. Before 1300, it was relatively dry but distinct wet periods may be recognised during 1340-1450, 1500-1610 and 1710-1820. Since the mid 1800s, the climate shows a trend towards greater aridity. The interdune lakes are generally fresh but locally, hypersaline lakes are found in juxtaposition. This implies that in general, the lakes have low residence times and flow back into the dune system, but sedimentary obstruction locally prevents outflow and extreme evaporation occurs. The stable isotope records show that the lakes are fed by palaeowaters which on the basis of other proxy data must predate the Last Glacial Maximum. Their recharge source is problematic but most likely this derives from a diminishing water table extending some 30 m south to the Yabulai Mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号