首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
一、北祁连地质构造概论位于中朝准地台西南部的北祁连山,是一较为典型的优地槽褶皱带。它北邻陆棚海型冒地槽——走廊过渡带,与阿拉善台隆相望;南侧是祁连中间隆起带;西北隅衔塔里木地台;东南与秦岭褶皱系毗邻(图1)。北祁连优地槽褶皱带与走廊过渡带、祁连中间隆起带,南祁连褶皱带,共同构成祁连褶皱系。北祁连地槽演化从中寒武世开始,经历晚寒武世、奥陶纪和志留纪地槽发展阶段,沉积厚达2万余米,于志留纪末褶皱成陆,结束地槽期。地槽内有多期蛇绿岩侵位和蛇绿混杂岩  相似文献   

2.
张杰 《四川地质学报》2010,30(3):302-304
青海省拉脊山地区某铜矿处于祁连加里东褶皱系拉脊山优地槽褶皱带中段,北拉脊山深大断裂夹持地带。矿区地层为上寒武统六道沟群下部火山岩组玄武岩段(∈3ld1^b)。F4断裂构造破碎带为铜矿富集场所。文章论述了铜矿点地质特征、矿体特征及矿石类型,最后归结出该矿体成因类型属于构造破碎带低温热液型铜矿。  相似文献   

3.
陕西凤县铅硐山铅锌矿床处于秦岭褶皱系礼县—柞水华力西冒地槽褶皱带。矿床产于古岔河—殷家坝向斜南翼次级构造——铅硐山—水柏沟紧闭倒转背斜西部倾伏端。矿体受其南侧分支构造铅硐山背斜控制。正在评价的Ⅰ、Ⅱ号主矿体产于同一含矿层位,分别位于背斜的北、南两翼(图1),矿体的厚度、产态、品位等均比较稳定,远景可观。该矿床是秦岭中泥  相似文献   

4.
中国天山区花岗岩类的演化特征   总被引:2,自引:0,他引:2  
天山区在构造上包括组成天山地槽褶皱系的北天山优地槽褶皱带、天山中间隆起带、南天山冒地槽褶皱带及塔里木地台北缘的库鲁克塔格断隆和柯坪断隆(图1).天山地槽的发展过程经历了中条—扬子旋回、加里东旋回、天山旋回(海西旋回)、印支一燕山旋回和喜马拉雅旋回.伴随地槽发展的每一重要阶段,均有程度不同和规模不等的岩浆侵入及喷发活动,而岩浆喷发及侵入活动往往与构造运动密切相关,并具多期、多次的  相似文献   

5.
甘肃崖湾金矿床地质矿化特征   总被引:3,自引:1,他引:2       下载免费PDF全文
崖湾金矿床位于秦岭褶皱系礼县—柞水冒地槽褶皱带西段的中部,秦岭EW向构造带与天水—武都隐伏基底深断裂的交汇复合部位,定位于中川花岗岩体东外接触带与高桥—礼县大断裂的夹持区,严格受次级断裂构造控制,矿体集中产于中石炭统和中泥盆统两套地层不整合接触的断裂构造及附近的断裂构造,金成矿与原始浊流沉积环境有关,泥质岩石对成矿有利,与沿构造充填的花岗斑岩脉紧密相伴,矿石属中等硫化物微细粒浸染型金矿石,金矿化与含硫化物石英脉、硫化物硅质脉、黄铁矿化、毒砂化、硅化、退色蚀变等热液脉体活动和围岩蚀变关系密切。  相似文献   

6.
一、地槽区的发育在上一篇文章中已指出,地槽带在其演化中经历一系列时期或旋迥,其延续时间从300—400百万年(较早的)到150—200百万年(较晚的)。对各个地槽区,特别是组成地槽带的地槽系而言,发育最活跃的时期是最后一个期(旋迥),有时是倒数第二个期,这个期以地槽区彻底转变为褶皱山区,而地槽系彻底转变为褶皱山脉而告终,其后在这一区域确立了陆台体制。这个期(旋迥),确切说以沉降为主的前半期,叫做主地  相似文献   

7.
浅谈阿舍勒黄铁矿型多金属矿的垂直分带   总被引:3,自引:0,他引:3  
阿舍勒黄铁型多金属矿床位于阿尔泰地槽褶皱系的中泥盆统安山质—英安质火山—沉积岩中.矿体充填在火山管道内或火山口近侧,主矿体隐伏地下.矿化元素有铁、铜、铅、锌、金、银、硫、钡等,伴生有锗、镓、铟、硒、镉、铋等.矿体上部形态复杂并有分枝,向深部连成一体,是一个向北东侧伏的筒状体.矿体自上而下具垂宜分带,依次为:重晶石—硅化带;黄铁矿—多金属带;黄铁矿—铜、锌带等…  相似文献   

8.
沙拉哈达钨矿区处于内蒙地轴北缘和大兴安岭地槽褶皱系的交接处.矿化主要分布在安山玢岩内,矿体主要由含矿石英脉组成,矿脉中普遍含黑钨矿、白钨矿、黄铁矿及多金属硫化物.与钨矿有关的侵人岩体主要是燕山期黑云母花岗岩及花岗斑岩.围岩蚀变以硅化、云英岩化、绢云母化为主.该矿床属高温热液成因类型.  相似文献   

9.
西准噶尔优地槽褶皱带沉积建造特征及其多旋回发展   总被引:2,自引:0,他引:2  
西准噶尔优地槽褶皱带是巨大的中亚-蒙古地槽的一部分,属克拉通间地槽,它由奥陶纪、志留纪、泥盆纪和石炭纪四个时期的地槽沉积物组成。根据沉积建造特征,可分成三种成因类型:(1)大陆边缘裂谷型优地槽;(2)岛弧型优地槽;(3)大陆边缘裂谷-岛弧型优地槽。此外,还可以划分出对偶性冒地槽和地中海型冒地槽。它们分别代表该优地槽褶皱带不同发展阶段地槽分化的产物。就沉积建造而言,该优地槽褶皱带具多旋回发展,表现在下部陆屑建造、蛇绿岩建造、安山质火山岩建造以及上部碎屑岩建造都具多旋回性。该褶皱带多旋回发展过程可以划分成早期旋回(O-S)、主旋回(D-C)和后期旋回(P)。主旋回之后,西准噶尔已成褶皱山系。优地槽褶皱带多旋回发展过程实际上是地槽迁移的过程。大陆边缘裂谷的发生和消亡与古大洋板块的俯冲有关。因此一般而言,古大洋板块的多旋回俯冲可以导致地槽褶皱带的多旋回发展。  相似文献   

10.
<正> 自黄汲清教授于1945年首次提出地槽褶皱系的多旋回发展概念以来,得到了国内外地质工作者的广泛引用。他指出我国多数地槽褶皱系都具有多旋回发展的特点。经过对天山、祁连山、秦岭等地槽褶皱系的深入研究、对比之后,初步建立了多旋回发展的模式。现以横断山区地槽为例来讨论该褶皱带中的多旋回发展特点。 横断山区位于青、藏、川、滇四省、区交接地带,其地质构造位置,正处在特提斯—喜马拉雅构造域东段拐弯部位,恰是欧亚板块与印度板块的拼合地带。根据作者在“三江地质志”构造组最近总结的资料,可把横断山区的构造单元划分如下(图1):  相似文献   

11.
The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns.  相似文献   

12.
河南嵩县小南沟金矿床地球化学特征   总被引:1,自引:0,他引:1  
河南省崇县小南沟金矿是产于熊耳群火山岩中的构造蚀变岩型矿床,矿体受控于近南北向断裂构造中,但其围岩蚀变特点、同位素组成以及流体包裹体成分均与店房稳爆角砾岩型金矿有一定的联系,与熊耳山区产于北东向或近东西向断裂中的蚀变岩型矿床相似,说明小南沟矿床与附近赋存于东西向以及稳爆角砾岩型矿床具有直接的成因联系,它们构成一个统一的成矿体系,其成矿物质来源与赋矿火山岩以及基底古老变质岩有关,成矿作用与燕山期岩浆  相似文献   

13.
Short-wave infrared (SWIR) reflectance spectroscopy was used to characterize hydrothermal minerals and map alteration zones in the Tuwu Cu–Au deposit, Xinjiang, China. The Palaeozoic hydrothermal system at Tuwu is structurally controlled, developed in andesitic volcanic rocks and minor porphyries. Hydrothermal alteration is characterized by horizontally zoned development of quartz, sericite, chlorite, epidote, montmorillonite and kaolin about individual porphyry dykes and breccia zones, as is shown by changes outward from a core of quartz veining and silicification, through an inner zone of sericite + chlorite to a marginal zone of chlorite + epidote. The alteration system comprises several such zoning patterns. Silicification and sericitization are spatially associated with Cu–Au mineralization. Zoning is also shown by compositional variations such that Fe-rich chlorite and Al-rich sericite occur preferentially toward the core and the most intensely altered parts, whereas Mg-rich chlorite and relatively Al-poor sericite are present on the margin and the relatively weakly altered parts of the hydrothermal alteration system. The compositions of chlorite and sericite, therefore, can be potentially used as vectors to Cu–Au mineralization. Montmorillonite and kaolinite, of probable weathering origin, are located near the surface, forming an argillic blanket overlying Cu–Au mineralization. Sporadic montmorillonite is also present at depth in the hydrothermal alteration system, formed by descending groundwater. Presence of a well-developed kaolinite-bearing zone on the surface is an indication of possible underlying Cu–Au mineralization in this region. Epidote occurs widely in regional volcanic rocks, as well as in variably altered rocks on the margin of the hydrothermal mineralization system at Tuwu. The widespread occurrence of epidote in volcanic country rocks probably reflects a regional hydrothermal alteration event prior to the localized, porphyry intrusion-related hydrothermal process that led to the Cu–Au mineralization at Tuwu.  相似文献   

14.
山西原平狐狸山金矿围岩蚀变特征与金矿化的关系   总被引:1,自引:0,他引:1  
狐狸山金矿是韧性剪切带型金矿床,矿区围岩蚀变发育广泛,类型有碳酸盐化,绢云母化,硅化等,蚀变分带明显,且蚀变强度与金矿化关系密切。围岩蚀变受韧性剪切变形影响,金矿化与围岩蚀变的主要期次同时形成。  相似文献   

15.
The geotectonic units of Zhejiang Province include the Yangtze Plate in the northwest juxtaposed against the South China fold system in the southeast along the Jiangshan–Shaoxing fault. The South China fold system is further divided into the Chencai–Suichang uplift belt and the Wenzhou–Linhai geotectogene belt, whose boundary is the Yuyao–Lishui fault. The corresponding metallogenic belts are the Mo–Au(–Pb–Zn–Cu) metallogenic belt in northwest Zhejiang, the Chencai–Suichang Au–Ag–Pb–Zn–Mo metallogenic belt, and the coastal Ag–Pb–Zn–Mo–Au metallogenic belt. The main Mesozoic metal ore deposits include epithermal Au–Ag(Ag), hydrothermal vein-type Ag–Pb–Zn(Cu), and porphyry–skarn-type Mo and vein-type Mo deposits. These ore bodies are related to the Mesozoic volcanic-intrusive structure: the epithermal Au–Ag(Ag) deposits are represented by the Zhilingtou Au–Ag deposit and Houan Ag deposit and their veins are controlled by volcanic structure; the hydrothermal vein-type Ag–Pb–Zn deposits are represented by the Dalingkou Ag–Pb–Zn deposit and also controlled by volcanic structure; and the porphyry–skarn-type Mo deposits are represented by the Tongcun Mo deposit and the vein-type Mo deposits are represented by the Shipingchuan Mo deposit, all of which are related to granite porphyries. These metal ore deposits have close spatio-temporal relationships with each other; both the epithermal Au–Ag(Ag) deposits and the hydrothermal vein-type Ag–Pb–Zn deposits exhibit vertical zonations of the metallic elements and form a Mo–Pb–Zn–Au–Ag metallogenetic system. These Jurassic–Cretaceous deposits may be products of tectonic-volcanic-intrusive magmatic activities during the westward subduction of the Pacific Plate. Favourable metallogenetic conditions and breakthroughs in the recent prospecting show that there is great resource potential for porphyry-type deposits (Mo, Cu) in Zhejiang Province.  相似文献   

16.
笏山金矿床为陡崖断裂带南段内最大的金矿床,为了揭示其矿床成因,在矿床地质研究的基础上开展了矿体围岩元素地球化学和流体包裹体研究。研究结果表明:笏山金矿床沿NE向断裂发育大规模的热液蚀变带,地表出露的断裂带形成一个庞大的面形蚀变带,矿化较弱,分带不明显,钻孔显示金矿体两侧依次发育黄铁绢英岩、绢英岩化花岗岩蚀变带和二长花岗岩,金矿体主要产于陡崖断裂带下盘黄铁绢英岩蚀变带内。质量平衡计算表明:绢英岩化过程中,主量元素SiO2、Al2O3、FeO、MnO、Na2O、K2O、P2O5和部分稀土元素从二长花岗岩中迁出,而MgO、CaO、Fe2O3,成矿元素Au、Ag,亲硫元素Cu、Pb及亲铁元素V、Cr、Co、Ni迁入二长花岗岩;黄铁绢英岩化过程中,主量元素FeO、Fe2O3、MnO、MgO、CaO,成矿元素Au、Ag,亲硫元素Cu及亲铁元素V、Cr、Co、Ni迁入,SiO2、Al2O3、Na2O、K2O和P2O5迁出。岩相学观察、显微测温以及单个包裹体成分激光拉曼分析提示其流体包裹体类型主要为气液两相包裹体和含CO2三相包裹体,具有低盐度(w(NaCl)为5.33%~13.29%)和中温(260~300℃)CO2-NaCl-H2O体系,在成矿过程中,含矿流体经历了流体不混溶作用。结合矿床地质特征及实验结果分析,确定该矿床为受陡崖断裂带控制的中温蚀变岩型金矿床。  相似文献   

17.
新疆西准噶尔金矿属岩浆期后热液石英脉型金矿。从有利于找矿角度出发,根据含金石英脉所产出的条件不同,可划分为六种类型。其中以产于玄武岩中及产于中酸性侵入岩接触带附近的含金石英脉意义较大。中酸性侵入岩接触带附近及断裂破碎带是成矿最有利部位,因此是今后找矿的主要地段。而已知矿床的深部及其外围找矿的潜力极大,重要矿带上发现新矿床、寻找新类型的可能性也是极大的。  相似文献   

18.
金矿体赋存于碎屑岩系与岩体接触部位构造破碎蚀变带中,成矿作用与超基性岩蚀变作用密切相关,矿床属于受构造破碎蚀变带控制的蛇绿岩中-低温变质热液型金矿床。  相似文献   

19.

Gold mineralisation at the Dobroyde prospect in central New South Wales is hosted by a zoned alteration system characterised by peripheral propylitic alteration, grading inwards through argillic and advanced argillic alteration to a siliceous altered core. Overprinting textures indicate that propylitic, argillic, advanced argillic and siliceous assemblages were successively superimposed on each other. Au grades between 0.3–0.8 ppm are associated with siliceous alteration and cross‐cutting pyrite veinlets. Higher Au grades are associated with barite veins that cut the pyrite veinlets. Native Au, native Te, Au, Pb and Hg tellurides, Pb selenide, chalcopyrite, Zn‐sphalerite and tennantite‐tetrahedrite occur in the barite veins. Microscopic pyrophyllite shears cut the barite veins. The location of the Dobroyde prospect, the orientation of its internal alteration zonation and the orientation of auriferous barite veins in the core of the prospect are controlled by a 330°‐striking fault. Movement on this fault, synchronous with hydrothermal activity, at some time between the Late Ordovician and mid‐Devonian controlled the development of successive phases of brecciation, siliceous alteration, pyrite and later barite‐Au veining in the prospect core. The restricted distribution of auriferous barite veins within the siliceous altered core of the prospect is inferred to be controlled by the relatively brittle rheology of this assemblage during deformation, and its location on the fault that formed the main hydrothermal fluid conduit. Alteration zones distal from this fault remain unmineralised. The Dobroyde prospect may be a product of the same Early Devonian metallogenic epoch as the paragenetically similar Temora and Peak Hill deposits. All three deposits/prospects appear to be localised in splays of either the Gilmore Fault Zone or the Parkes Thrust.  相似文献   

20.
The Ernest Henry Cu–Au deposit was formed within a zoned, post-peak metamorphic hydrothermal system that overprinted metamorphosed dacite, andesite and diorite (ca 1740–1660 Ma). The Ernest Henry hydrothermal system was formed by two cycles of sodic and potassic alteration where biotite–magnetite alteration produced in the first cycle formed ca 1514±24 Ma, whereas paragenetically later Na–Ca veining formed ca 1529 +11/−8 Ma. These new U–Pbtitanite age dates support textural evidence for incursion of hydrothermal fluids after the metamorphic peak, and overlap with earlier estimates for the timing of Cu–Au mineralization (ca 1540–1500 Ma). A distal to proximal potassic alteration zone correlates with a large (up to 1.5 km) K–Fe–Mn–Ba enriched alteration zone that overprints earlier sodic alteration. Mass balance analysis indicates that K–Fe–Mn–Ba alteration—largely produced during pre-ore biotite- and magnetite-rich alteration—is associated with K–Rb–Cl–Ba–Fe–Mn and As enrichment and Na, Ca and Sr depletion. The aforementioned chemical exchange almost precisely counterbalances the mass changes associated with regional Na–Ca alteration. This initial transition from sodic to potassic alteration may have been formed during the evolution of a single fluid that evolved via alkali exchange during progressive fluid-rock interaction. Cu–Au ore, dominated by co-precipitated magnetite, minor specular hematite, and chalcopyrite as breccia matrix, forms a pipe-like body at the core of a proximal alteration zone dominated by K-feldspar alteration. Both the core and K-feldspar alteration overprint Na–Ca alteration and biotite–magnetite (K–Fe) alteration. Ore was associated with the concentration of a diverse range of elements (e.g. Cu, Au, Fe, Mo, U, Sb, W, Sn, Bi, Ag, F, REE, K, S, As, Co, Ba and Ca). Mineralization also involved the deposition of significant barite, K(–Ba)–feldspar, calcite, fluorite and complexly zoned pyrite. The complexly zoned pyrite and variable K–(Ba)–feldspar versus barite associations are interpreted to indicate fluctuating sulphur and/or barium supply. Together with the alteration zonation geochemistry and overprinting criteria, these data are interpreted to indicate that Cu–Au mineralization occurred as a result of fluid mixing during dilation and brecciation, in the location of the most intense initial potassic alteration. A link between early alteration (Na–Ca and K–Fe) and the later K-feldspathization and the Cu–Au ore is possible. However, the ore-related enrichments in particular elements (especially Ba, Mn, As, Mo, Ag, U, Sb and Bi) are so extreme compared with earlier alteration that another fluid, possibly magmatic in origin, contributed the diverse element suite geochemically independently of the earlier stages. Structural focussing of successive stages produced the distinctive alteration zoning, providing a basis both for exploration for similar deposits, and for an understanding of ore genesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号