首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface or submerged horizontal or vertical plate can be considered as a new concept breakwater.This paper investigates the wave-plate interaction of this type of breakwater by use of the boundary element method.The relationships of wave transmitted and reflected among plate thickness,submergence and length are carefully studied by numerical simulation.It is shown that:(1) The transmitted coefficients of submerged horizontal plate or vertical plate will become larger with the increase of plate thickness and reduce rapidly with the decrease of plate submergence.(2) Both surface horizontal and vertical plate are efficient for intermediate and short wave elimination,but vertical plate is more effective.(3) Submerged horizontal plate can act more effectively than submerged vertical plate does.With all wave frequencies,the vertical plate almost has no wave elimination effect.  相似文献   

2.
This paper examines the results of physical model studies conducted in a monochromatic wave flume, to evaluate the wave transmission characteristics of a submerged plate breakwater consisting of a fixed plate of 0.50 m length and 0.003 m thickness. The model was oriented at varying inclinations and submergence. The influence of wave steepness, relative depth, relative submergence and angle of inclination on wave transmission was analysed. It was found that the horizontal plate is effective for short waves with steepness parameter higher than 5×10?3 in relative depth grater than 0.21. The plate oriented at an angle of inclination of 60° is found to be effective for the entire ranges of wave parameters considered for the study and it reduces the wave height by about 40%.  相似文献   

3.
于珍  李雪艳  程志  孟钰婕 《海洋工程》2023,41(2):132-143
鉴于双弧板式透空堤的消浪性能仍不理想,提出了一种潜堤—双弧板组合结构,并基于OpenFOAM软件建立了波浪与该结构相互作用的数值模型,采用试验结果对所建数值模型进行验证。在此基础上,讨论了该新型结构的消浪特性、波压力分布特征以及所受波浪力的影响因素。结果表明,透射系数随相对板宽的增大而减小,反射系数则相反。透射与反射系数随相对潜深的变化较为显著。当结构位于静水位上方(即相对潜深为-0.05)时,透射系数最小而反射系数最大;当结构位于静水位下方(即相对潜深为0.05)时,透射系数最大而反射系数最小。该组合结构两块弧板上下表面的正负压力变化关于横轴近似对称,不同测点处的压力值差异显著。水平波浪力与垂直波浪力的变化趋势大致相似,但垂直波浪力远大于水平波浪力。研究结果可为其工程应用提供理论指导与技术支撑。  相似文献   

4.
Wang  Ke  Shi  Peng-fei  Chen  Yu-chao  Cheng  Xiao-ming 《中国海洋工程》2019,33(2):219-225
Based on the wave radiation and diffraction theory, this paper investigates a new type breakwater with upper arcshaped plate by using the boundary element method(BEM). By comparing with other three designs of plate type breakwater(lower arc-shaped plate, single horizontal plate and double horizontal plate), this new type breakwater has been proved more effective. The wave exiting force, transmission and reflection coefficients are analyzed and discussed. In order to reveal the wave elimination mechanism of this type of breakwater, the velocity field around the breakwater is obtained. It is shown that:(1) The sway exciting force is minimal.(2) When the ratio of the submergence and wave amplitude is 0.05, the wave elimination effect will increase by 50% compared with other three types of breakwater.(3) The obvious backflow is found above the plate in the velocity field analysis.  相似文献   

5.
The wave transmission and reflection characteristics of a rigidly fixed surface and submerged horizontal plate were investigated experimentally in detail for a wide range of incident wave steepnesses and for different depths of submerge of the plate in deep water conditions in regular water wave fields. The experiments were conducted at the Ocean Engineering Centre, Indian Institute of Technology, Madras, India, in a wave flume 10 m long, 0.3 m wide and in a constant water depth of 0.8 m. The horizontal plate is 0.22 m thick and 1.2 m in length, covering the enrire width of the flume. From the present investigation, it is found that for a rigid surface plate, the coefficient of transmission is a minimum and the coefficient of reflection is a maximum, but the maximum value of the coefficient of energy loss occurs for plates submerged closer to the still-water level (SWL) and not for the surface plate. It is also found that the value of the coefficient of reflection increases with the increase in the value of the Reddy-Neelamani (RN) number, the ratio of horizontal water particle excursion at the bottom of the plate in its absence to the length of the plate. The coefficient of transmission is found to decrease rapidly with increase in the value of RN number up to 0.1. The wave transmission is only 5% for RN from 0.1 to 0.2. It is also found that for RN number greater than 0.04, the minimum energy dissipation is consistently about 60% of the incident wave energy.  相似文献   

6.
新型开孔工字板组合式防波堤波浪力特性试验研究   总被引:1,自引:1,他引:0  
开孔工字板组合式防波堤是基于透空板式防波堤的一种新型结构形式,具有自重轻、材料省的特点。为充分了解新型开孔组合式防波堤的受力特性,基于室内水槽物理模型试验,测量新型开孔工字板组合式防波堤上的波压力与结构总力,研究相对波高H/d、相对波长L/B对该新型防波堤结构表面压力的影响,讨论了该新型防波堤所受波浪力荷载与相对波高H/d、相对波长L/B的关系。结果表明,相对波高H/d是决定新型防波堤结构表面波压力和结构总力的主要影响因素。该新型防波堤结构波浪力荷载以垂直方向受力为主,新型防波堤结构所受竖向总力远大于水平总力,最大可达到15倍。新型防波堤水平总力随相对波长L/B先增大后趋于稳定。相对波长L/B=3.617是防波堤结构水平总力变化幅度的分界点。  相似文献   

7.
Forces and moment on a horizontal plate due to wave scattering   总被引:1,自引:0,他引:1  
Wave reflection and transmission from a fixed horizontal plate have been widely studied but theoretical solutions are only available for certain limiting conditions. A general solution for this wave scattering problem is presented using the finite-element method, covering the whole range of relative depth ratio from shallow to deep water limits and submergence depth ratio from the water surface to the bed. Existing long-wave solutions for the surface plate and the submerged plate have been extended to obtain the hydrodynamic forces and overturning moment exerted on the plate. Results from the finite-element program compare well with these solutions. Variations of the reflection coefficient, wave forces and moment, with the plate width to wave length ratio, relative depth ratio and submergence depth ratio are discussed.  相似文献   

8.
利用完全非线性数值波浪水槽技术研究水下平板与波浪的相互作用。假定水下平板厚度极薄、刚性,位于有限水深并且非常接近自由水面。应用四阶龙格库塔方法追踪每一时刻的波面形状,采用阻尼层来吸收反射波以保证算法的稳定性,同时引入平滑和重组的方法抑制自由表面控制点的较高梯度。通过对波浪与浮动圆柱相互作用的数值模拟证实了数值波浪水槽方法的有效性,计算结果与线性理论吻合良好。在波浪数值水槽方法中引入造波板模拟波浪产生并与水下平板发生相互作用,应用傅立叶解析方法对波面变形、波浪力作了分析。结果表明在板非常接近自由水面的情况下会表现出现很强的非线性,揭示了线性理论的局限性。  相似文献   

9.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

10.
Based on a two-dimensional linear water wave theory, this study develops the boundary element method (BEM) to examine normally incident wave scattering by a fixed, submerged, horizontal, impermeable plate and a submerged permeable breakwater in water of finite depth. Numerical results for the transmission coefficients are also presented. In addition, the numerical technique's accuracy is demonstrated by comparing the numerical results with previously published numerical and experimental ones. According to that comparison, the transmission coefficient relies not only on the submergence of the horizontal impermeable plate and the height of the permeable breakwater, but also on the distance between horizontal plate and permeable breakwater. Results presented herein confirm that the transmission coefficient is minimum for the distance approximately equal to four times the water depth.  相似文献   

11.
《Ocean Engineering》1999,26(4):325-341
Based on a two-dimensional linear water wave theory, this study develops the boundary element method (BEM) to examine normally incident wave scattering by a fixed, submerged, horizontal, impermeable plate and a submerged permeable breakwater in water of finite depth. Numerical results for the transmission coefficients are also presented. In addition, the numerical technique's accuracy is demonstrated by comparing the numerical results with previously published numerical and experimental ones. According to that comparison, the transmission coefficient relies not only on the submergence of the horizontal impermeable plate and the height of the permeable breakwater, but also on the distance between horizontal plate and permeable breakwater. Results presented herein confirm that the transmission coefficient is minimum for the distance approximately equal to four times the water depth.  相似文献   

12.
Wave-induced loads on a submerged plate, representative of submerged breakwater, coastal-bridge deck and a certain type of wave energy converter, in a uniform current are investigated in this study using fully nonlinear numerical wave tanks (NWTs) based on potential flow theory. The coupling effect of wave and current is explored, and the underlying interaction mechanisms of the hydrodynamic forces are described. The presence of a background current modifies the frequency dispersion. It produces changes of the water-surface elevation, and also has an effect on wave-induced loads. Depending on the nonlinearity, higher harmonic wave components are generated above the submerged plate. These contribute to the wave forces. It is found that the horizontal and the vertical force, hence the moment, are affected in the opposite way by the currents. The Doppler shifted effect dominates the vertical force and the moment on the plate. Whereas, the Doppler shifted effect and the generation of higher wave harmonics play opposite roles on the horizontal forces. The contribution of 2nd order harmonics is found to be up to 30% of the linear component. The current-induced drag force, represented by the advection term ρU∂φ/∂x in the pressure equation, is found to lead to a decrease in the moment for the most range of wavelengths considered, and an increase in the moment for a small range of longer waves.  相似文献   

13.
Pradip Deb Roy  Sukamal Ghosh   《Ocean Engineering》2006,33(14-15):1935-1953
The paper presented is a solution of shallow water wave force, using small amplitude linear wave theory on two-dimensional vertically submerged circular thin plates under three different configurations: (1) a surface-piercing circular thin plate, (2) a submerged circular thin plate, and (3) a bottom-standing circular thin plate. Finally Morison's equation is used for the determination of wave force which is based on the linear wave theory. The plate is submerged in water near the shore on uniformly sloping bottom. The solution method is confined in a finite domain, which contains both the region of different depth of water and the plate. Laplace's equation and boundary value problems are solved in a finite domain, by the method of separation of variables and the small amplitude linear wave theory. The variation of horizontal force by single particle, total horizontal force and moment with respect to the wave amplitude are obtained at different depth of water and at different wave period. It is observed that the force and moment are converging with the increase of wave period and the gradients of force and moment with respect to the wave amplitude are extremely high for lower wave period.  相似文献   

14.
利用水槽二维物理模型对规则波及不规则波作用下明基床上开孔沉箱所受到的波浪力进行了较为系统的试验研究。分析了开孔沉箱总垂直力峰值时刻对应的总水平力与相对基床高度、消浪室相对宽度、波陡、相对水深以及开孔率等影响因素之间的关系,给出了明基床上开孔沉箱总水平力比值(总垂直力峰值时刻对应的总水平力/总水平力峰值)与各影响因素之间的计算关系式。研究成果可供实际工程参考应用。  相似文献   

15.
Experiments in a wave flume have been performed to analyse the nonlinear interaction between regular gravity waves and a submerged horizontal plate used as breakwater. A new method, based on the Doppler shift generated by a moving probes, has been used to discriminate the incident fundamental mode and the reflected fundamental mode. The relationships of the reflection and transmission coefficients to the wave number at different submergence depth ratios are presented. The accurate discrimination, by this method, of the phase-locked and free modes allows the quantification of the higher harmonics generated by the breakwater and the analysis of the nonlinear interaction between the waves and the submerged plate. The transfer of energy from the fundamental mode to higher harmonics is very large in the cases of small submergence depth ratios. The vortices produced at the edges take part in the production of higher harmonics by interaction with the free surface but involve, at the same time, a dissipation process that increases the efficiency of the breakwater.  相似文献   

16.
To investigate the dynamics of submersible mussel rafts, the finite element program Aqua-FE?, developed by the University of New Hampshire (UNH), was applied to rafts moored at the surface and submerged. The submerged configuration is used to reduce wave forcing and to avoid contact with floating ice during winters in northern waters. Each raft consists of three pontoons connected by a grid framework. Rafts are intended to support densely spaced mussel ropes hung from the framework. When submerged, the pontoons are flooded, and the raft is held vertically by floats attached by lines. The computer models were developed in Aqua-FE? to simulate the effects of waves and current. They were validated by comparison with wave tank results by use of a 1/10 scale raft physical model. Comparisons showed good agreement for the important heave (vertical) and pitch (rotational) motions, though there was a tendency towards conservative results for wave and current drag. Full-scale simulations of surface and submerged single raft and two rafts connected in tandem were performed. Submerged raft wave response was found to be reduced relative to that at the surface for both the single and two-raft configurations. In particular, the vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. For example, the maximum vertical velocities of mussel rope attachment points in the submerged two raft case were 7%?20% of the corresponding velocities when at the surface.  相似文献   

17.
基于映像理论将部分反射直墙前物体的散射问题,等效于开敞水域中原物体的散射和关于直墙映像体散射的线性叠加进行求解。采用高阶边界元方法建立了部分反射直墙前二维任意形状物体波浪绕射和辐射问题的数值分析模型,通过与已发表的海底方箱和淹没圆柱结果的对比验证了数值模型的准确性。应用该模型研究了直墙反射系数幅值及相位、方箱与墙间距离等参数对水面方箱上波浪激振力、附加质量和辐射阻尼的影响。结果表明:直墙反射系数幅值越大,波浪激振力、附加质量和辐射阻尼的波动越大,附加质量在一些频率下出现负值;相位角的变化会改变波浪激振力、附加质量和辐射阻尼曲线的偏移,在低频区对升沉附加质量有显著影响;方箱距离直墙越远,方箱上的波浪激振力、附加质量和辐射阻尼随波数振荡的频率越快,峰值频率向低频侧移动。  相似文献   

18.
1 .IntroductionApile supportedplatesubmergedatacertaindepthunderseasurfacewasdevelopedasanewtypeofunderwaterbreakwaterfortheprotectionofcoastlinesandharbors .Thisisbecauseitdoesnothinderthewaterexchangebetweentheopenseaandtheprotectedareanordoesithindertheviewovertheopensea .Besides,itislessdependentonthegeotechnicalconditionsoftheseabottomwherethestructureistobeinstalled ;however,itscostishigh ,particularlyinrelativelydeepwaters .Formanyapplicationsitispossibletoreducethewavemotionintheprotec…  相似文献   

19.
This paper deals with the random forces produced by high ocean waves on submerged horizontal circular cylinders. Arena [Arena F, Interaction between long-crested random waves and a submerged horizontal cylinder. Phys Fluids 2006;18(7):1–9 (paper 076602)] obtained the analytical solution of the random wave field for two dimensional waves by extending the classical Ogilvie solution [Ogilvie TF, First- and second-order forces on a cylinder submerged under a free surface. J Fluid Mech 1963;16:451–472; Arena F, Note on a paper by Ogilvie: The interaction between waves and a submerged horizontal cylinder. J Fluid Mech 1999;394:355–356] to the case of random waves. In this paper, the wave force acting on the cylinder is investigated and the Froude Krylov force [Sarpkaya T, Isaacson M, Mechanics of wave forces on offshore structures, Van Nostrand Reinhold Co.; 1981], on the ideal water cylinder, is calculated from the random incident wave field. Both forces represent a Gaussian random process of time. The diffraction coefficient of the wave force is obtained as quotient between the standard deviations of the force on the solid cylinder and of the Froude Krylov force. It is found that the diffraction coefficient of the horizontal force Cdo is equal to the Cdv of the vertical force. Finally, it is shown that, since a very large wave force occurs on the cylinder, it may be calculated, in time domain, starting from the Froude Krylov force. It is then shown that this result is due to the fact that the frequency spectrum of the force acting on the cylinder is nearly identical to that of the Froude–Krylov force.  相似文献   

20.
A numerical boundary integral equation method combined with a non-linear time stepping procedure is used for the calculation of wave forces on a large, submerged, horizontal circular cylinder. As the method is based on potential theory, all computations are performed in the inertia dominated domain, that is, for small Keulegan-Carpenter numbers. Computations are carried out for the Eulerian mean current under wave trough level equal to zero. When the cylinder is moved towards the sea bed the computations show that the inertia coefficients increase significantly, which is associated with a blockage effect. Furthermore, the effect of the wave steepness is reduced when the submergence of the cylinder is increased. In the vicinity of the free water surface the vertical inertia coefficient is highly dependent upon the wave steepness, which tends to reduce it, whereas the horizontal inertia coefficient is only slightly dependent on the wave steepness. Computations are also carried out for cylinder diameters comparable with the wave length. Finally, inertia coefficients computed by the present method are compared with some analytical results by Ogilvie [(1963), First and second order forces on a cylinder submerged under a free surface. J. Fluid Mech. 16, 451–472]. As long as the assumptions leading to Ogilvie's theory are fulfilled (cylinder radius small compared to the wave length), the results are quite similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号