首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical wave model based on the modified four-order nonlinear Schoedinger (NKS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is perforated by changing sideband condi- tions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.  相似文献   

2.
Numerical simulation and mechanism analysis of freak waves   总被引:1,自引:1,他引:1  
A numerical wave model based on the modified fourth-order nonlinear Schroe dinger equation(mNLSE) in deep water was developed to simulate the formation of freak waves and a standard split-step,pseudo-spectral method was used to solve the equation.The validation of the model is firstly verified,then the simulation of freak waves was performed by changing sideband conditions,and the variation of wave energy was also analyzed in the evolution.The results indicate that Benjamin-Feir instability(sideband instability) is an important mechanism for freak wave formation.  相似文献   

3.
An experimental and numerical study of the freak wave speed   总被引:2,自引:2,他引:0  
The propagation speed is one of the most important characteristics for describing freak waves. The research of freak wave speed is not only helpful for understanding the generation mechanism and evolution process of freak waves, but also applicable to the prediction. A stable and accurate method is proposed for the calculation of the freak wave speed, in which physical model tests are carried out to measure the motion of the largest wave crest along the wave tank. The linear regression relationship between the spatial position of the largest wave crest and instantaneous moment is established to calculate the speed of totally 248 cases of experimental freak waves and 312 supplementary cases of numerical freak waves. Based on the calculate results, a semitheoretical and semiempirical formula is proposed by using a regression analysis method to predict the speed of the freak wave, and the nonlinear characteristic of the freak wave speed is also investigated.  相似文献   

4.
Efficient Generation of Freak Waves in Laboratory   总被引:3,自引:1,他引:3  
In the present study,Kriebel's method is improved to generate freak waves in laboratory.The improved method superposes a random wave train with two transient wave trains to simulate freak wave events in a wave tank.The freak waves are more nonlinear than what generated with Kriebel's method of the same energy.It can also generate freak waves to satisfy all the qualifications of the adopted definition with less energy than Kriebel's and can hardly influence the significant wave height.  相似文献   

5.
An efficient focusing model for generation of freak waves   总被引:1,自引:1,他引:0  
Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simulation results will be unrealistic. Therefore, a modified phase modulation method for simulating high nonlinear freak waves was developed. The surface elevations of some wave components at certain time and place are positive by modulating the corresponding random initial phases, then the total surface elevation at the focused point is enhanced and furthermore a freak wave event is generated. The new method can not only make the freak wave occur at certain time and place, but also make the simulated wave surface time series satisfy statistical properties of the realistic sea state and keep identical with the target wave spectrum. This numerical approach is of good precision and high efficiency by the comparisons of the simulated freak waves and the recorded freak waves.  相似文献   

6.
Owing to the Benjamin-Feir instability,the Stokes wave train experiences a modulation-demodulation process,and presents a recurrence characteristics.Stiassnie and Shemer researched the unstable evolution process and provided a theoretical formulation for the recurrence period in 1985 on the basis of the nonlinear cubic Schr dinger equation(NLS).However,NLS has limitations on the narrow band and the weak nonlinearity.The recurrence period is re-investigated in this paper by using a highly efficient High Order Spectral(HOS) method,which can be applied for the direct phaseresolved simulation of the nonlinear wave train evolution.It is found that the Stiassnie and Shemer’s formula should be modified in the cases with most unstable initial conditions,which is important for such topics as the generation mechanisms of freak waves.A new recurrence period formula is presented and some new evolution characteristics of the Stokes wave train are also discussed in details.  相似文献   

7.
Long Waves Associated with Bichromatic Waves   总被引:1,自引:0,他引:1  
A numerical model of low frequency waves is presented. The model is based on that of Roelvink (1993), but the nu-merical techniques used in the solution are based on the so-called Weighted-Average Flux (WAF) method with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave setup. The short wave (or primary wave) energy equation is solved with a traditional Lax-Wendroff technique. A nonlinear wave theory is introduced. The model described in this paper is found to be satisfactory in modeling low frequency waves associated with incident bichromalic waves.  相似文献   

8.
A numerical model for wave propagation in a harbour is verified by use of physical models.The extended time-dependent mild slope equation is employed as the governing equation,and the model is solved by use of ADI method containing the relaxation factor.Firstly,the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests,and it is regarded as the basis for simulating partial reflection boundaries of the numerical model.Then model tests on refraction,diffraction and reflection of waves in a harbour are performed to measure wave height distribution.Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.  相似文献   

9.
Wave Numerical Model for Shallow Water   总被引:4,自引:0,他引:4  
The history of forecasting wind waves by wave energy conservation equation is briefly des-cribed.Several currently used wave numerical models for shallow water based on different wave theoriesare discussed.Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model,which takes use of the most advanced wave research achieve-ments and has been applied to several theoretical and field conditions.The characteristics and applicabilityof the model,the finite difference numerical scheme of the action balance equation and its source termscomputing methods are described in detail.The model has been verified with the propagation refractionnumerical experiments for waves propagating in following and opposing currents;finally.the model is ap-plied to the Haian Gulf area to simulate the wave height and wave period field there,and the results arecompared with observed data.  相似文献   

10.
南海文昌地区内波振幅反演研究   总被引:3,自引:2,他引:1  
The field experiment is conducted from April 16,2005 to July 20,2005 at Wenchang area east of Hainan Island(19°35'N,112°E) of China.Internal wave packets are observed frequently with thermistor chains during the experiment.Meanwhile,internal waves are also detected from a synthetic aperture radar(SAR) image on June 19,2005 and several other moderate-resolution imaging spectroradiometer(MODIS) images near a mooring position.The distance between the positive and negative peaks induced by the internal wave can be obtained from satellite images.Combined with remote sensing images and in situ data,a new method to inverse the amplitude of the internal wave is proposed based on a corrected nonlinear Schr?dinger(NLS) equation.Two relationships are given between the peak-to-peak distance and the characteristic wavelength of the internal wave for different nonlinear and dispersion coefficients.Based on the satellite images,the amplitude inversion of the internal waves are carried out with the NLS equation as well as the Kd V equation.The calculated amplitudes of the NLS equation are close to the observation amplitude which promise the NLS equation a reliable method.  相似文献   

11.
A horizontal two- dimensional numerical model is developed for estimation of sediment transport and sea bed change around a large circular cylinder under wave action. The wave model is based on an elliptic mild slope equation. The wave-induced current by the gradient of radiation stress is considered and a depth integrated shallow water equation is applied to the calculation of the current. The mass transport velocity and the bed shear stress due to streaming are considered, which are important factors affecting the sediment transport around a structure due to waves, especially in reflective areas. Wave-current interaction is taken into account in the model for computing the bed shear stress. The model is implemented by a finite element method. The results of this model are compared with those from other methods and agree well with experimental data.  相似文献   

12.
Generation and Properties of Freak Waves in A Numerical Wave Tank   总被引:3,自引:3,他引:3  
Freak waves are generated based on the mechanism of wave focusing in a 2D numerical wave tank. To set up the nonlinear numerical wave tank, the Boundary Element Method is used to solve potential flow equations incorporated with fully nonlinear free surface boundary conditions. The nonlinear properties of freak waves, such as high frequency components and wave profile asymmetry, are discussed. The kinematic data, which can be useful for the evaluation of the wave forces exerted on structures to avoid underestimation of linear predictions, are obtained, and discussed, from the simulated results of freak waves.  相似文献   

13.
This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the k equation turbulence scheme to determine the eddy viscosity in the Boussinesq equations. To calculate the turbulence production term in the equation, a new formula is derived based on the concept of surface roller. By use of this formula, the turbulence production in the one-equation turbulence scheme is directly related to the difference between the water portide velocity and the wave celerity. The model is verified by Hansen and Svendsen‘s experimental data (1979) in terms of wave height and setup and sctdown. The comparison between the model and experimental results of wave height and setup and setdown shows satisfactory agreement. The modeled turbulence energy decreases as waves attenuate in the surf zone. The modeled production term peaks at the breaking point and decreases as waves propagate shoreward. It is also suggested that both convection and diffusion play their important roles in the transport of turbulence energy immediately after wave breaking. When waves approach to the shoreline, the production and dissipation of turbulence energy are almost balanced. By use of the slot technique for the simulation of the movable shoreline boundary, wave ranup in the swash zone is well simulated by the present model.  相似文献   

14.
Analysis of energy characteristics in the process of freak wave generation   总被引:2,自引:0,他引:2  
The energy characteristics in the evolution of the wave train are investigated to understand the inherent cause of the freak wave generation. The Morlet wavelet spectrum method is employed to analyze the numerical, laboratory and field evolution data of this generation process. Their energy distributions and variations are discussed with consideration of corresponding surface elevations. Through comparing the energy characteristics of three cases, it is shown that the freak wave generation depends not only on the continuous transfer of wave train energy to a certain region where finally the maximum energy occurs, but also on the distinct shift of the converged energy to high-frequency components in a very short time. And the typical energy characteristics of freak waves are also given.  相似文献   

15.
A Modified Form of Mild-Slope Equation with Weakly Nonlinear Effect   总被引:6,自引:0,他引:6  
Nonlinear effect is of importance to waves propagating from deep water to shallow water.Thenon-linearity of waves is widely discussed due to its high precision in application.But there are still someproblems in dealing with the nonlinear waves in practice.In this paper,a modified form of mild-slope equa-tion with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation.The modified form of mild-slope equation is convenient to solvenonlinear effect of waves.The model is tested against the laboratory measurement for the case of a submergedelliptical shoal on a slope beach given by Berkhoff et al,The present numerical results are also comparedwith those obtained through linear wave theory.Better agreement is obtained as the modified mild-slope e-quation is employed.And the modified mild-slope equation can reasonably simulate the weakly nonlinear ef-fect of wave propagation from deep water to coast.  相似文献   

16.
Based on a set of fully nonlinear Boussinesq equations up to the order of O(μ^2, ε^3μ^2) (where ε is the ratio of wave amplitude to water depth and ,μ is the ratio of water depth to wave length) a numerical wave model is formulated. The model's linear dispersion is acceptably accurate to μ ≌ 1.0, which is confirmed by comparisons between the simulat- ed and measured time series of the regular waves propagating on a submerged bar. The moving shoreline is treated numer- ically by replacing the solid beach with a permeable beach. Run-up of nonbreaking waves is verified against the analytical solution for nonlinear shallow water waves. The inclusion of wave breaking is fulfilled by introducing an eddy term in the momentum equation to serve as the breaking wave force term to dissipate wave energy in the surf zone. The model is applied to cross-shore motions of regular waves including various types of breaking on plane sloping beaches. Comparisons of the model test results comprising spatial distribution of wave height and mean water level with experimental data are presented.  相似文献   

17.
The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.  相似文献   

18.
Improvements on Mean Free Wave Surface Modeling   总被引:1,自引:0,他引:1  
DONG  Guo-hai 《中国海洋工程》2002,16(4):549-560
Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream funetion wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker indcx in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al. , 1992), with Time-Operator-Split-ting (TOS) used for the treatment of the source terms. This method allows a small number of eomputational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation is solved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).  相似文献   

19.
An extremely large (“freak”) wave is a typical though rare phenomenon observed in the sea. Special theories (for example, the modulation instability theory) were developed to explain mechanics and appearance of freak waves as a result of nonlinear wave-wave interactions. In this paper, it is demonstrated that the freak wave appearance can be also explained by superposition of linear modes with the realistic spectrum. The integral probability of trough-to-crest waves is calculated by two methods: the first one is based on the results of the numerical simulation of a wave field evolution performed with one-dimensional and two-dimensional nonlinear models. The second method is based on calculation of the same probability over the ensembles of wave fields constructed as a superposition of linear waves with random phases and the spectrum similar to that used in the nonlinear simulations. It is shown that the integral probabilities for nonlinear and linear cases are of the same order of values  相似文献   

20.
Based on the theoretical high-order model with a dissipative term for non-linear and dispersive wave in water of varying depth, a 3-D mathematical model of non-linear wave propagation is presented. The model, which can be used to calculate the wave particle velocity and wave pressure, is suitable to the complicated topography whose relative depth ratio of the characteristic water depth to the characteristic wavelength in deep-water) is equal to or smaller than one. The governing equations are discretized with the improved 2-D Crank-Nicolson method in which the first-order derivatives are corrected by Taylor series expansion, .and the general boundary conditions with an arbitrary reflection coefficient and phase shift are adopted in the model. The surface elevation, horizontal and vertical velocity components and wave pressure of standing waves are numerically calculated. The results show that the numerical model can effectively simulate the complicated standing waves, and the general boundary conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号