首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中国亚热带东部山区太阳直接辐射的计算和分布   总被引:1,自引:0,他引:1  
本文以水平地面太阳直接辐射气候学计算为基础,考虑坡地影响讨论了坡地太阳直接辐射的气候学计算方法。分析了山区地形遮蔽对坡地直接辐射的影响。最后以南、北坡20°为例分析了我国亚热带东部山区坡地太阳直接辐射的时、空分布规律。  相似文献   

2.
由于坡度、坡向和地形之间相互遮蔽等局地地形因子的影响,确定实际复杂地形下太阳散射辐射是比较困难的.本文在前人研究的基础上,对以前的模型进行了一些改进,考虑了坡度、坡向和地形相互遮蔽作用对复杂地形下天文辐射的影响,基于数字高程模型(DEM)数据,研制了以复杂地形下天文辐射为起始数据的复杂地形下太阳散射辐射的分布式模型,在模型中还考虑了散射辐射的各向异性.以地形复杂的贵州高原为例,应用100 m×100 m分辨率的DEM数据及气象站常规观测气象资料,计算了贵州高原复杂地形下各月及年的太阳散射辐射精细空间分布.结果表明:(1)局地地形因子(如坡度、坡向和地形遮蔽)对贵州高原复杂地形下太阳散射辐射的空间分布影响较大,随着地形的起伏变化,太阳散射辐射的空间分布明显不同,纬向分布特征不明显.(2)对于太阳散射辐射而言,地形对其的影响仍然很大,在太阳散射辐射计算时也是不容忽视的.  相似文献   

3.
不同地形下辐射收支各分量的差异与变化   总被引:12,自引:0,他引:12  
傅抱璞 《大气科学》1998,22(2):178-190
给出了确定山区辐射收支各分量的方法,并根据计算结果分析了在不同纬度和季节各种地形下辐射收支各分量的差异及其随坡地倾角或谷地周围地形遮蔽角的变化规律。  相似文献   

4.
起伏地形下浙江省散射辐射时空分异规律模拟   总被引:2,自引:0,他引:2  
结合影响起伏地形下太阳散射辐射的天空因素与地面因素,通过基于数字高程模型(DEM)数据的起伏地形下天文辐射模型和地形开阔度模型,综合考虑地面因素对散射辐射的影响;基于常规地面气象站观测资料建立的水平面散射辐射模型,考虑天空因素对散射辐射的影响;建立了起伏地形下浙江省散射辐射分布式估算模型;逐月计算了浙江省散射辐射(100m×100m)的空间分布。结果表明:散射分量分布与地理地形因子、季风影响、大气透明程度有关,由高纬向低纬逐渐增加;季节分布特点为,夏季〉春季〉秋季〉冬季;坡度、坡向对散射辐射的分布影响小,但辐射值与开阔度呈正相关,各季辐射最大值分布在开阔度大处,最小值在开阔度最小处,不同季节有所伸缩。计算结果可以为气候变化和环境资源研究提供基础数据。  相似文献   

5.
丘陵山地总辐射的计算模式   总被引:23,自引:0,他引:23       下载免费PDF全文
李占清  翁笃鸣 《气象学报》1988,46(4):461-468
本文根据对丘陵山地地形参数(平均坡向、坡度和地形遮蔽角)的数值模拟结果,应用试验观测资料,较详细地讨论了山地总辐射的理论计算模式。文中主要讨论了三个问题:山地总辐射理论模式的建立;模式参数的数值试验;模式在大别山南部局部地区的模拟结果及其分析。结果表明,山区总辐射受地形影响非常明显。本模式原则上适用于任何地区各种地形下总辐射的数值模拟。  相似文献   

6.
起伏地形下我国太阳散射辐射分布式模拟   总被引:6,自引:0,他引:6  
基于1km×1km分辨率的数字高程模型(DEM)数据,考虑了地形因子对太阳散射辐射的影响,改进了开阔度的计算模型,确定了我国气候平均情况下月散射系数的空间分布,实现了实际起伏地形下我国太阳散射辐射的分布式模拟,计算了我国范围内1km×1km分辨率1-12月气候平均太阳散射辐射的空间分布.结果表明:局地地形对太阳散射辐射空间分布的影响比较明显;模拟结果可靠,可进行大数据量处理,适用于遥感图像处理、地理信息系统等数据处理平台.  相似文献   

7.
中国坡地总辐射的计算和分析   总被引:5,自引:0,他引:5  
翁笃鸣  孙诒安 《气象科学》1990,10(4):348-357
本文根据作者所提坡地实际太阳直接辐射和散射辐射的气侯计算方法,计算了我国各地的坡地实际总辐射资料,讨论了其随坡向、坡度以及纬度、季节的变化,并以南、北坡(坡度20°)为例,首次绘制出坡地实际总辐射在我国的地理分布,揭示出南、北坡总辐射间的巨大差异。  相似文献   

8.
日照百分率的小网格分析方法   总被引:10,自引:0,他引:10  
周锁铨  吴战平 《气象科学》1993,13(2):201-210
本文讨论了在无地形遮蔽情况下山区日照百分率的小网格计算方法,提出了一种简洁、方便、精度高的逐步插值法,有效地解决了剩余误差问题,从理论上证明了计算的一致收敛性。由此计算了贵州省1月、7月份的日照百分率,与气象站实测值比较,结果令人满意。  相似文献   

9.
丘陵山区地面热平衡场数值模拟的初步探讨   总被引:1,自引:0,他引:1  
李慧  翁笃鸣 《气象学报》1992,50(4):485-491
本文根据丘陵山区地形参数(平均坡度、坡向及地形遮蔽角)的数值模拟结果,以及在完成山区地面辐射场计算的基础上,从地表能量平衡方程出发,初步建立起零维地表能量平衡模式,并利用考察资料和附近气象站资料,对大别山南段赵公岭山区3.0×3.5km~2范围内100m网格点进行计算,首次绘制出热平衡各分量在该山区的分布图。结果表明,山区地面热平衡场与地形要素配合较好,显示出地形条件的决定性作用。  相似文献   

10.
利用河南省及周边145个气象站1961-2000年常规气象观测资料和河南省1:25万DEM数据,充分考虑起伏地形下太阳散射辐射的天空因素与地面因素后,基于分布式开阔度模型和天文辐射模型,实现了起伏地形下河南省太阳散射辐射的分布式模拟.计算了100m×100 m分辨率下河南省1-12月气候平均太阳散射辐射及多年平均年散射辐射总量的空间分布.结果表明:在充分考虑经验系数的时空分布特征后,模拟精度有了进一步提高.与郑州站的观测资料对比验证表明,模拟精度较高,年平均绝对误差为3.06 MJ·m-2,年平均相对误差为1.67%;局地地形对太阳散射辐射的影响比较明显;通过个例年验证对模型性能和模拟结果进行考察,年平均相对误差不足11%.综上表明模型的时空模拟性能良好.  相似文献   

11.
山区水库水面气温与太阳辐射的修正及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
考虑到山区水库库面气象要素受周围地形影响, 结合前人的研究, 库区气温计算方法采用回归余项法并计入地形影响, 而对于库区水面上的太阳辐射计算, 则采用了平行山脊坡地上的简化算法。应用结果表明:由经度、纬度、海拔高度和大地形影响等4项建立的多元线性回归气温方程拟合效果显著; 并用同时期盐边气象站的资料进行检验, 检验精度在0.5℃以内。与平地相比, 在山区地形影响下的二滩库区水面太阳辐射有一定程度的改变量, 同时不同河岸坡度对水库水面接收的太阳辐射有较大影响。该方法有效揭示了山区月平均温度和太阳辐射的时空变化。修正后的气温和太阳辐射符合山区实际情况。  相似文献   

12.
根据光的多次散射理论——离散纵标法,利用我国国家一级辐射测站的大气廓线,计算出晴空大气观测波段不同高度上的太阳直接辐射和向下散射辐射。将模式输出的地面辐射值与地面辐射观测资料进行比较,对不同高度的太阳直接辐射和向下散射辐射以及日变化进行了讨论。最终目的是直接由MODTRAN3计算我国辐射空白站的地面辐射值,以弥补我国辐射站稀少,时空分布短缺的不足。  相似文献   

13.
太阳辐射能的研究,愈来愈受到人们的重视。本文讨论了太阳直接辐射和散射辐射候总量的计算方法,并分析了本省的光能利用率和光合生产潜力。 一、直接辐射和散射辐射候总量的计算 碧空条件下,直接辐射和散射辐射日总量的理论计算式可写成:  相似文献   

14.
基于数字高程模型(DEM)数据,在充分考虑了地形因子对太阳直接辐射和散射辐射的影响后,实际计算了起伏地形下黑河流域的太阳辐射。在忽略地表和大气之间的多次反射后,地表太阳总辐射计为三项:按起伏坡面上实际入射角考虑的太阳直接辐射、经过下垫面天空视角因子订正的坡面天空散射辐射和考虑周围地形反射效应的附加辐射。计算结果表明:局地地形起伏对太阳直接辐射、总辐射空间分布的影响非常强烈,使得复杂地形下不同坡向间总辐射和直接辐射平均计算差额十分显著,且太阳天顶角从较小增大至中等大小时,这两种平均计算差额均加大一倍多;在较小和中等大小太阳天顶角下,不同坡向间总辐射平均计算差额,均较相同条件下直接辐射平均计算差额为小,这是因为总辐射还包括了天空漫射和邻近地形反射辐射因子,这两个因子和坡面上太阳入射方位的变化共同影响地表入射太阳辐射;起伏地形主要使得太阳辐射在局地区域内背阴、向阳坡向间发生显著的重新分配。因此,在复杂地形地区进行太阳辐射计算时必须考虑地形的影响。  相似文献   

15.
大连市地处38°54′N,属低丘陵山区,市区内地形起伏较大,在相同的太阳辐射条件下,不同坡地接受的太阳辐射有很大差异。近年来,随着大连市区范围的不断扩大,居民住宅和居民小区正在向坡地发展。根据大连市的坡地条件,利用有关的辐射定律,在不考虑大气层作用的  相似文献   

16.
太阳散射辐射的分光测量及其能量分配   总被引:1,自引:0,他引:1  
王修兰 《气象学报》1994,52(2):241-247
近十余年来,国内外不少学者先后研究了散射辐射与总辐射的关系[1-6],建立了各种计算散射辐射的经验公式,但有关分光散射辐射分量的测量和研究为数甚少。为此,我们于1989-1990年在北京对300-2800nm光谱范围内的7个波段的散射分量进行测量,并研究了各分量与全谱段散射总量间的定量关系。  相似文献   

17.
贵州高原起伏地形下日照时间的时空分布   总被引:1,自引:0,他引:1       下载免费PDF全文
由于坡度、坡向和地形之间相互遮蔽等局地地形因子的影响, 实际起伏地形下的日照时间与水平面上的日照时间有一定差异。该文建立了一种基于数字高程模型 (DEM) 的起伏地形下日照时间的模拟方法, 计算了起伏地形下贵州高原100 m×100 m分辨率日照时间的时空分布。结果表明:坡度、坡向、地形遮蔽对日照时间的影响较大, 实际起伏地形下日照时间的空间分布具有明显地域特征。1月太阳高度角较低, 坡度、坡向的作用非常明显, 地形遮蔽面积较大, 日照时间的空间差异较多, 日照时间为16~142 h, 最大值约为最小值9倍; 7月太阳高度角较高, 地形遮蔽面积相对较小, 日照时间的空间差异相对较少, 日照时间为133~210 h, 最大值为最小值1.6倍, 但由于7月日照时间相对较多, 局地地形对日照时间影响仍明显。4月、10月日照时间及其变化幅度介于1月和7月之间。  相似文献   

18.
我国散射辐射的气候计算及其分布   总被引:2,自引:0,他引:2  
本文利用我国61个日射站的实测资料,讨论了太阳散射辐射的气候计算方法。在详细分析云对散射辐射影响的基础上,提出了半理论、半经验散射辐射气候计算式,并利用全国206个站的云量资料,计算并分析了散射辐射的全国分布。  相似文献   

19.
第三讲 山地温度况状的分析和推算(一)   总被引:1,自引:0,他引:1  
翁笃鸣 《气象》1985,11(3):34-38
影响山区温度条件的因素较多,但从气候上说,主要还是宏观地理条件(测点经、纬度,离大水体远近,所在大山系的走向以及宏观的气候背景条件等),测点拔海高度,地形(坡向、坡度、地形类别、地平遮蔽度等)和下垫面性质(土壤、植被状况等)四种。其中尤以拔海高度和地形的影响最显著。本讲着重介绍这些影响的主要特点。 一、山区温度随拔海高度的分布 1.山区平均气温直减率 讨论山区气温随拔海高度的变化应区分两种情况,一是在自由大气中气温随高度的变化;另一是山区气温随测点拔海高度的变  相似文献   

20.
借鉴国内外实际地形条件下的太阳辐射计算方法,基于数字高程模型,建立了任意地形实际天气下30min太阳辐射估算模型。在此基础上利用2008年9月—2009年6月祁连山高山区马粪沟流域实测辐射资料对模型精度进行了验证,并分析了模型误差来源。结果表明,由于DEM数据误差造成30min太阳辐射模型计算的遮蔽度与实际的遮蔽度存在...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号