首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
临安与龙凤山辐射数据质量及初步结果比较   总被引:1,自引:1,他引:0       下载免费PDF全文
采用国际通用的辐射数据质量评估方法对2005—2011年浙江临安、黑龙江龙凤山两个区域大气本底站辐射观测资料进行质量评估与比较分析。结果表明:两站辐射数据通过物理可能限制检验与极端罕见限制检验的百分比均超过99.5%,但通过相关要素比较限制检验的百分比上,临安与龙凤山站分别降至97.9%与95.9%;双轴定位追踪太阳出现偏差是造成直接辐射与散射辐射数据精度降低的主要原因。CM21表的热偏移在-5 W·m-2以内,而其进行热偏移订正可以显著提高数据的通过率。对应同一太阳天顶角,临安站晴空总辐射与直接辐射均低于龙凤山站,散射辐射则相反,其原因是临安的大气透明系数较低,大气浑浊度较高。2006—2011年,临安站的大气向下长波辐射呈下降趋势,达到了0.01的显著性水平,且其多年平均值 (363.7±59.3 W·m-2) 显著高于龙凤山站 (274.9±77.6 W·m-2);龙凤山站晴空太阳总辐射呈增加趋势,达到了0.1的显著性水平。  相似文献   

2.
张晓娟  阮祥  王国安  周志刚 《气象科技》2017,45(6):1002-1005
利用郑州国家基本气象站国产与荷兰CM6B型气象辐射仪器同期观测的太阳总辐射资料,采用统计分析方法,对仪器所采集的数据进行对比分析,并对差异的可能原因进行探讨。结果表明:国产仪器与荷兰CM6B型总辐射表观测数据差异小,日差值的平均值为0.13 MJ·m~(-2),差值标准差为0.75 MJ·m~(-2);仪器月总辐射累计差值有明显的季节性特征,春夏季节的差值稍高于秋冬季节,总体变化趋势平缓,数据均可用,国产总辐射表总体上较为可靠。厂家、型号、参数灵敏度的差异、校准的误差以及人工参与订正数据均是直接造成仪器差值显著的主要原因。  相似文献   

3.
以北京上甸子区域大气本底站二氧化碳(CO2)和几种典型卤代温室气体(HFC-134a、PFC-218和HCFC-22)浓度在线观测为例,统计分析并匹配计算了各风向浓度距平与浓度载荷,探讨了各季节城市排放和输送对上甸子站温室气体本底观测的影响。研究期间,CO2本底数据比例约21.2%,受局地和城市排放与输送影响,非本底浓度比本底浓度偏高(3.7±1.3)×10~(-6);HFC-134a和PFC-218浓度距平和浓度载荷的特征反映了两个物种源区特征的差别;HCFC-22浓度特征与空调制冷剂夏高冬低的季节排放规律相一致。  相似文献   

4.
黑碳气溶胶的辐射强迫及其对东亚的气候效应仍有较大不确定性,同时在黑碳气溶胶气候效应的研究中对海洋的关注较少。为了量化分析黑碳气溶胶直接辐射效应和分析其通过海气相互作用对东亚夏季风的影响,用区域海气耦合模式进行黑碳气溶胶离线模拟的敏感试验。试验结果表明:东亚晴空大气顶和地面的净辐射强迫在春季分别为1. 58 W·m~(-2)和~(-2). 75 W·m~(-2),在夏季分别为1. 68 W·m~(-2)和~(-2). 62 W·m~(-2)。受黑碳气溶胶辐射效应影响,大气变暖,大气热力稳定度增加,云量减少。春季黑碳气溶胶的"热泵效应"引起华南降水增加和夏季风提前爆发。夏季孟加拉湾海表降温,南支槽加深,引起华南降水增加;另外中纬度附近经向温度梯度增大,进而增强冷空气势力和水汽辐散,引起华北降水减少。华南降水正异常和华北降水负异常有利于"南涝北旱"。黑碳气溶胶辐射效应能通过海气相互作用增加热带海表温度,减小经向温度梯度和海陆热力差异,进而减弱夏季风。此外,黑碳气溶胶辐射效应也能增强局域哈德莱环流及北风,进而减弱夏季风。  相似文献   

5.
选取塔克拉玛干沙漠腹地塔中地区和北缘过渡带肖塘地区2个观测站,2013年土壤热通量观测资料,初步分析了两地区不同下垫面的土壤热通量变化特征。结果表明:(1)在日变化尺度上,2个站都有明显的日变化特征,1月塔中站土壤热通量日平均变化幅度小于肖塘站,4月2个站的土壤热通量变化幅度较为接近;7、10月塔中站土壤热通量变化幅度明显高于肖塘站。(2)不同天气条件下,2个站的土壤热通量变化都有很大差异。晴天,塔中站和肖塘站土壤热通量变化都呈现出单峰型,变化幅度较一致,日较差分别为119.7 W·m~(-2)和119.1 W·m~(-2);沙尘暴天气,土壤热通量受云层的影响,变化波动较大,塔中站变化幅度小于肖塘站,日较差分别为83.6 W·m~(-2)和133.1 W·m~(-2);降水天气,塔中站和肖塘站变化幅度都很剧烈,日较差分别为70.6 W·m~(-2)和66.6 W·m~(-2)。(3)年变化尺度上,塔中站和肖塘站土壤热通量都在7月达到最大值,分别为7.7 W·m~(-2)和4.2 W·m~(-2),在11月出现最小值分别为-5.3 W·m~(-2)和-10.2 W·m~(-2)。塔中站和肖塘站土壤热通量年总量差异很大,塔中站为16.8 W·m~(-2),能量由大气向土壤传递,土壤为热汇,而肖塘站则为-34.9 W·m~(-2),能量由土壤向大气传播,土壤表现为热源。  相似文献   

6.
总辐射表夜间零点偏移试验与分析   总被引:1,自引:0,他引:1  
杨云  丁蕾  王冬 《气象》2010,36(11):100-103
总辐射表夜间零点偏移试验在夜间晴天条件下,采用室外平行对比法对不同型号的总辐射表的零点进行测试。通过数据分析,分别比较了黑白型和全黑型总辐射表、国产与进口总辐射表夜间零点偏移的大小,并分析了形成零点偏移的原因。试验结果表明,在夜间晴天条件下国产总辐射表的零点偏移小于10 W·m~(-2)通过总辐射表感应面向下水平安装和加盖试验也验证了零点偏移确实是由"冷天空"所致。  相似文献   

7.
PSP总日射表在我国一直作为标准总日射表和质量优良的辐射仪器在使用,2006年以前还曾作为国家散射标准,在太阳辐射量值传递中测量标准散射辐射,通过成分和法计算标准总日射辐照度。总日射表的校准在晴天条件下进行,此时天空无云,由于热偏移为负值,导致对短波灵敏度系数被低估。2011年10月14日—11月15日在北京密云上甸子大气本底站进行了对比观测试验,通过对不同总日射表热偏移订正方法的试验与研究,进行了5种热偏移订正方法的比较。通过订正,在用于室外成分和法校准时,PSP表的灵敏度系数的准确度可提高1%,进而提高总辐射的测量准确度。  相似文献   

8.
广州冬季大气消光系数的贡献因子研究   总被引:12,自引:1,他引:11  
2008年1月1~31日和2月6~24日在广州城区每天采集一个PM2.5样品,对样品进行有机碳、元素碳及水溶性离子分析,利用美国IMPROVE能见度方程计算得到广州冬季大气消光系数.结果发现:冬季PM2.5 日均值质量浓度为89.0±53.4/μg·m~(-3),OC(Organics Carban)质量浓度为16.9±11.9μg·m~(-3),EC(Element Carbon)质量浓度为5.9±3.4 μg·m~(-3),水溶性离子总浓度为43.9±23.5μg·m~(-3).冬季大气消光系数均值为342±185 Mm~(-1).广州冬季大气消光系数主要贡献者为(NH_4)_2SO_4、NH_4NO_3、POM(Par-ticular organic matter)、EC和NO_2,对消光系数的贡献率分别为36.3%、14.5%、26.6%、17.4%和5.2%.  相似文献   

9.
王晓东  曹雯  伍琼  岳伟  段春锋 《气象科学》2021,41(2):245-252
利用1961—2015年黄淮地区8个辐射站太阳辐射和日照时数等常规气象资料,分别评价6种常用的太阳总辐射和有效辐射估算模型在黄淮地区的适用性,同时采用多元回归分析和迭代等方法,对辐射参数进行优化调整,建立了适合本地区的辐射最优化估算模型。结果表明:童宏良公式和邓根云公式分别在估算太阳总辐射和地面有效辐射时的误差最小,相比其余的辐射估算模型,两者在黄淮地区适用性最好。另外太阳总辐射本地化修正模型的相对误差绝对值(value of Absolute Relative Error, ARE)和均方根误差(Root Mean Squared Error, RMSE)分别为16.28%和1.730 MJ·m~(-2)·d~(-1),优于童宏良公式等常用太阳辐射估算模型;有效辐射本地化修正模型的ARE和RMSE分别为23.19%和1.404 MJ·m~(-2)·d~(-1),优于邓根云公式等常用有效辐射估算模型;因此黄淮地区本地化辐射修正模型适用于当地地表净辐射估算,且具有较好的估算精度。  相似文献   

10.
沙尘气溶胶对辐射有显著影响,利用耦合了Shao2004起沙参数化方案的WRF/Chem(大气/化学全耦合模式),模拟分析了沙尘天气过程中沙尘气溶胶对辐射的影响。结果发现沙尘气溶胶可以导致地面向下的短波辐射通量减小42.51%,平均减小-3.30~-49.46 W·m~(-2),最大可达-162.67 W·m~(-2);沙尘气溶胶可以通过自身向外发射长波辐射,导致地面向下的长波辐射通量增大,地面向下的长波辐射通量平均增加为17.49~50.49 W·m~(-2),最大可达99.17 W·m~(-2)。当PM10浓度为10~20 mg·m-3,沙尘气溶胶能够减小地面向下的长波辐射通量,即沙尘气溶胶在该地区对大气具有"保温"作用;白天沙尘气溶胶主要增加大气层顶向上的长波辐射通量,夜间则减少大气层顶向上的长波辐射通量,大气层顶向外的长波辐射通量平均变化为-25.29~28.83 W·m~(-2),最大可达87.22 W·m~(-2)。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号