首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用2010年9-11月鞍山大气成分监测站CE-318太阳光度计观测资料,依据气溶胶光学厚度测量原理,计算得到2010年鞍山秋季大气气溶胶光学厚度、波长指数等大气光学特性数据,通过统计分析,给出鞍山秋季气溶胶光学特性分布特征。结果表明:随着测量AOD波段的降低,AOD值逐渐增大,9月的AOD平均值最大,10月AOD平均值次之,11月AOD平均值最小。从频率分布看,2010年9月 AOD日均值集中分布在0.4-0.6之间,10月和11月AOD日均值集中分布在0.0-0.4之间,表明10-11月大气较为清洁|波长指数日均值的频率分布说明鞍山秋季大气污染物以细粒子为主。500 nm 的AOD值与波长指数成对数关系,两者在9、10月和11月的相关系数分别为0.5145、0.8412和0.2715;9月AOD与PM10、PM2.5、PM1.0质量浓度为较小负相关,10月和11月AOD与PM10、PM2.5、PM1.0质量浓度成正相关,且10、11月AOD与气溶胶细粒子相关性较为显著。AOD值与能见度在趋势上呈较小的负相关性,可能是由于高层气溶胶粒子对气溶胶光学厚度产生了主要影响。  相似文献   

2.
贺兰山地区大气气溶胶光学特征研究   总被引:24,自引:9,他引:24  
牛生杰  孙继明 《高原气象》2001,20(3):298-301
利用M-120型太阳光度表的观测资料并结合有关资料,分析了贺兰山地区大气气溶胶的光学特征,并对在各类天气条件下,大气气溶胶光学厚度以及Angstrom浑浊度系数和波长指数的变化规律进行了讨论。利用实测地面大气气溶胶粒子谱资料,探讨了大气气溶胶粒子数浓度与Angstrom浑浊系数β之间的关系以及大气气溶胶粒子几可平均尺度与波长指数α之间的相关关系。  相似文献   

3.
利用2008年5月16日至2009年4月17日太湖地区多光谱旋转遮光辐射仪(multi—filter ro—tating shadow—band radiometer,简称MFRSR)的观测资料进行反演,得出415、500、615、675和870nm5个波段大气气溶胶光学厚度(aerosol optical depth,简称AOD)及各季节浑浊度系数和波长指数的统计结果。结果表明,5个波段AOD的最大值分别为1.9、1.6、1.3、1.2和1.0;它们谱分布的半宽度分别为0.90、0.70、0.55、0.45和0.25;AOD频率分布极大值处所对应的AOD值分别为0.750、0.550、0.475、0.425和0.425。5个波段AOD的平均值在春季最大,夏季次之,除870nm外,均为冬季最小。浑浊度系数变化范围为0~1.25,其中大于0.2的占97%以上,大于0.4的占66%以上。春季、夏季、秋季和冬季的波长指数变化范围分别为0~3.0、0~2.8、0.2~2.0和0.2~2.0,表明太湖地区大气污染较为严重,且受人为源的影响显著。相对于秋冬季,春夏季有较大粒径的气溶胶粒子存在。  相似文献   

4.
利用2017年成都市彭州地区CE318型太阳分光光度计的观测数据,反演了该地区的气溶胶光学厚度(Aerosol Optical Depth,AOD)、Angstr?m指数(α)和大气浑浊度(β),分析了AOD与α、β以及可吸入颗粒物(PM10、PM_(2. 5))之间的关系。结果表明:AOD表现出冬季>春季>夏季>秋季的季节变化特征,高值主要出现在冬、春季,低值主要出现在夏、秋季。Angstr?m指数在全年的波动不大,月平均值为1. 22±0. 19,低值出现在春季,高值出现在夏季。除了冬季,在其他季节观察到和Angstr?m指数具有相同的月变化趋势。AOD与β之间具有较强的相关性,但与PM10、PM_(2. 5)的正相关关系表现偏弱。该地区气溶胶光学特性受北方沙尘的影响并不明显,但受到人类活动的影响显著,该地区主控态气溶胶是以细粒子为主的城市—工业型气溶胶类型。  相似文献   

5.
兰州冬季大气气溶胶光学厚度及其与能见度的关系   总被引:14,自引:9,他引:14  
利用光度计资料,计算了兰州冬季大气气溶胶的光学厚度,并利用计算结果进一步得出了Angstrom浑浊度系数β和波长指数α,对计算结果的分析表明,兰州冬季气溶胶与历史同期相比,光学厚度较大,浑浊度较高,且多为大粒子。此外,本文还对气溶胶光学厚度与能见度进行了分析、拟合,二者的变化趋势正好相反,光学厚度与能见度之间近似呈指数递减的关系。  相似文献   

6.
黄土高原干旱半干旱地区气溶胶光学厚度遥感分析   总被引:2,自引:0,他引:2  
利用兰州大学半干旱气候与环境观测站2006年8月-2008年10月太阳光度计(CE-318)观测资料和同期卫星MODIS(Terra和Aqua)产品资料,分析了该站气溶胶光学厚度(AOD)日变化、月变化和Angstrom波长指数(α指数)月变化特征,发现春季AOD日变幅最大,存在双峰现象,秋、冬季较小;9月AOD最小,4月和12月AOD较大;α指数在4月最小,7月最大.采用太阳光度计反演的550 nm AOD与Terra-MODIS和Aqua-MODIS AOD产品相比较,Terra-MODIS与太阳光度计AOD相关系数为0.69,大于Aqua-MODIS的0.62.并从地表反照率假设、气溶胶模型选择和云影响等方面分析了产生对比偏差的原因,进一步分析了黄土高原干旱半干旱地区AOD的分布和季节变化特征.结果表明:气溶胶光学厚度呈西低东高的分布特征;AOD高值中心与大城市有较好对应;黄土高原干旱半干旱地区AOD在春季最大,夏季有所减小,秋季最小,但冬季升高;Aqua-MODIS中深蓝算法对西北荒漠地区亮地表AOD的反演效果较好.  相似文献   

7.
利用AERONET太湖站2007—2010年大气气溶胶光学特性数据,基于马氏距离聚类分析对太湖地区气溶胶进行分类研究。结果表明,气溶胶光学厚度(AOD)夏季达到最大(1.29),Angstrom波长指数(AE)在秋季达到最大(1.31);单散射反照率(SSA)均值在春季和秋季达到最大(0.92);不对称因子(ASY)均值在夏季达到最大(0.66);气溶胶粒子谱分布呈现双峰分布;太湖地区气溶胶粗模态粒子主要来源于北方的沙尘以及近海海域的海盐颗粒,细模态粒子主要来自人为污染尤其是汽车尾气、工业废气等的排放;吸收性气溶胶光学厚度(AAOD)夏季出现最大值0.11,AE夏季出现最小值1.0,说明该地区气溶胶粒子包含了典型的黑碳气溶胶。太湖地区混合类气溶胶占比最多(54.08%),其次是城市工业类气溶胶(18.95%);不同类型气溶胶占比的季节性差异较明显,秋季混合类型气溶胶占比最大(65.30%),城市工业类型在夏季占比最高(32.07%),春季受到远距离输送的影响,沙尘类占比最高(21.01%)。  相似文献   

8.
西安地区气溶胶光学特性研究   总被引:5,自引:0,他引:5  
利用2008年5月-2009年4月和2010年4月-2011年3月两年的太阳光度计CE318数据,分析了西安地区气溶胶光学厚度(AOD)和波长指数(α)的时间变化特征.结果表明,受局地污染和地形影响,泾河站的AOD全年较高,两个时段的年平均值分别为0.69±0.40和0.67±0.39,AOD和α的最大值都发生在夏季;受沙尘天气影响,气溶胶波长指数春季最小,AOD秋季最小.CE318和MODISAOD的对比结果表明,两者有较好的相关性,符合MODIS设计精度的数据占55.0%~73.3%.2008-2010年MODIS AOD平均值的空间分布表明,陕西境内存在3个AOD高值区,分别位于关中盆地、汉中市区和安康市区,局地污染和地形影响是造成AOD高值区的主要原因.  相似文献   

9.
西北地区气溶胶光学特性及辐射影响   总被引:3,自引:1,他引:2  
利用SACOL(兰州大学半干旱气候与环境观测站)2006~2012年AERONET(全球气溶胶自动监测网)level 2.0和太阳短波辐射计资料,分析了中国西北地区气溶胶的光学特性与辐射影响。利用辐射传输模式SBDART(平面平行大气辐射传输模式)检验TOA(大气层顶)处辐射强迫为正的原因。BOA(地表)、TOA、Atmosphere(大气)的辐射强迫年均值分别是-59.43 W m-2、-17.03 W m-2、42.40 W m-2,AOD(光学厚度,550 nm)年均值0.37,α(波段的波长指数,440~675 nm)年均值0.91,变化趋势与AOD位相相反,当AOD为0.3~2.2时,α很小(0.0~0.2),表明粒子尺度很大。SSA(单次散射反照率,675 nm)年均值0.93,g(不对称因子,675 nm)年均值0.68,复折射指数(675 nm)实部年均值1.48,虚部0.007。复折射指数实部的年变化趋势与AOD一致,虚部与AOD反位相,所以西北地区多为粗模态散射性气溶胶。气溶胶对大气的加热率最大值出现在0~2 km,随高度递减。冬、夏半年在地表加热率分别是2.6 K d-1和0.6 K d-1;季节变化中,冬季、秋季、春季和夏季,在地表的加热率依次是2.5 K d-1、1.4 K d-1、1.2 K d-1和0.2 K d-1,主要因为秋季气溶胶的吸收性大于春季。地表反照率和SSA对TOA正辐射强迫贡献率分别是22.5%和77.5%。  相似文献   

10.
兰州冬季的大气浑浊度   总被引:6,自引:3,他引:6  
1980年12月,我们用太阳光度表在兰州市的地面和625米高度处进行了同步测量大气浑浊度的观测。本文利用两个点的观测资料计算了厚度为625米的低层大气的浑浊度。主要结果是:(1)兰州冬季浑浊度高,12月份埃斯川姆浑浊度系数的平均值为0.44。73%的气溶胶粒子集中在低层大气。(2)低层大气和上层大气的浑浊度系数有不同的日变化规律。(3)低层大气和上层大气气溶胶粒子的大小相同。(4)浮尘天气具有浑浊度系数高和波长指数低的特征。(5)谷地内夜间是浑浊物的净积累期,白天是净消散期,夜间的积累常大于白天的消散,使大气浑浊度总是保持着较高的水平。(6)主要浑浊物源是人造源——煤烟。山谷地势和逆温是影响兰州大气浑浊度的两个突出的自然因素。  相似文献   

11.
利用FY-3A陆上气溶胶日产品,结合ENVI遥感影像软件和ArcGIS地理信息软件的相关模块,处理和分析了贵州省2009年冬季大气气溶胶光学厚度,并由此计算出Angstrom浑浊度系数和波长指数。分析表明:贵州省2009年冬季整层大气气溶胶光学厚度在0.55μm波段内的旬变化幅度为0.28~0.53μm,并呈现出波动性的发展趋势,特别是2010年1月下旬—2月下旬有显著增加,较大值在整个冬季都相对集中于贵州省的中部、西南部以及北部地区;在污染物浓度变化中,细粒子浓度变化因素占主导地位;与冬季的前期相比,后期气溶胶光学厚度较大,细粒子比重有所增加,浑浊度稍微偏高,造成空气轻微污染。  相似文献   

12.
南京气溶胶光学特性地基观测研究   总被引:2,自引:1,他引:1  
王静  牛生杰  许丹 《气象科学》2017,37(2):248-255
利用2013年南京地区CE318太阳光度计地基观测反演资料,分析了气溶胶光学特性的变化特征,并根据图解法对该地区气溶胶类型分布特征进行研究。结果表明:南京地区气溶胶光学厚度(AOD)月平均的最大值出现在1月(0.97±0.49),最小值出现在7月(0.53±0.37),全年均值为0.71±0.42。除了3月受沙尘事件影响外,ngstr9m波长指数(α)在全年其余月份值均高于0.8,最大值出现在8月和12月(1.24±0.17);AOD季节平均值在冬季(0.85±0.47)和春季(0.72±0.45)略高于夏季(0.63±0.40)和秋季(0.62±0.36)。α季节平均值特征表现为冬季(1.18±0.16)夏季(1.15±0.32)秋季(1.05±0.33)春季(0.86±0.21);AOD的日变化呈现早晚高,白天比较稳定的特征,冬季呈现出单峰变化特征,峰值出现在13∶00(1.05±0.64);工业型和城市型复合污染导致细粒子污染占比较高,全年AOD和α频率分布呈现明显的单峰分布特征,峰值中心分别位于0.53和1.2,对应最大频率分别为21%和16%;根据α和δα函数图解法得到南京地区AOD高值区(0.7)主要集中在细模态粒子增长部分(1.0α1.4,δα0,η~70%),粒径范围在0.10~0.15μm之间。  相似文献   

13.
利用拉萨站及纳木错站地面观测数据分析了拉萨市气溶胶光学厚度(AOD)日变化、季节变化,并对MODIS产品的数据质量及适用性进行了初步检验。结果表明,拉萨市AOD在08~10时,17~20时存在明显波动,11~16时比较稳定。拉萨站与纳木错站AOD季节变化存在差异,拉萨站呈单峰型,峰值在春季,纳木错呈双峰型,主峰在春季,次峰出现在8月,季节变化极大值的出现可能与春季沙尘天气有关。拉萨站AOD整体高于纳木错站,Angstrom波长指数则相对较小,这可能与城市人类活动有关。MODIS气溶胶产品在拉萨不具适用性。   相似文献   

14.
利用2004~2009年秋季臭氧监测仪的3级观测资料,分析了华北及周边地区的气溶胶光学性质。结果表明:大部分区域气溶胶光学厚度(Aerosol Optical Depth,AOD)和气溶胶紫外吸收指数(Ultra Violet Aerosol Index,UVAI)平均值分别高于0.8和0.75;高气溶胶事件发生频次统计表明,AOD高值(>0.4)频发于北京及其周边地区,UVAI高值(>1.0)频发于河北中部及南部地区;华北及其周边地区绝大多数城市平均AOD和UVAI分别高于0.7和0.60,而张家口、承德和阳泉3个城市的平均AOD和UVAI值分别低于0.6和0.65。作者进一步研究了2006年10月30日的一次霾事件中气溶胶的光学性质以及其时空分布特征。结果表明,霾由华北地区输送至渤海海域,并向东北方向输送;香河地基EZlidar激光雷达的垂直观测结果进一步表明,工业和城市型气溶胶主要集中在1500m以下,其中高浓度部分集中于650m以下,平均峰值位于285m,平均消光系数达2.15km-1;CALIOP卫星观测资料结合后向轨迹分析表明,大气低层气溶胶类型以工业和城市型气溶胶为主,而高层则由于上游大气输送沙尘粒子的混入使气溶胶类型转变为污染—沙尘型。霾事件期间,香河站CE-318太阳光度计观测的AOD平均值(标准差)从背景值0.08(0.04)升高至1.17(0.14);ngstrm指数平均值(标准差)从背景值0.90(0.10)升至1.12(0.09);核模态、积聚模态和粗模态的气溶胶粒子数柱总量均增加,其中细粒子所占比例明显升高。  相似文献   

15.
黄土高原半干旱地区气溶胶光学厚度变化特征的初步分析   总被引:3,自引:2,他引:1  
利用"兰州大学半干旱气候与环境观测站"2006年8月至2007年4月的CE-318全自动跟踪太阳光度计观测资料,分析了黄土高原半干旱地区气溶胶光学厚度(AOD)的变化特征。结果表明,黄土高原半干旱地区气溶胶光学厚度谱基本满足Angstrom关系;在可见光和近红外波段,随着波长的增大,气溶胶光学厚度是减小的;黄土高原半干旱地区AOD日变化类型主要有单峰型、稳定型、上升型3种。逐日变化特征显示,降水对气溶胶粒子具有明显的湿清除作用,霾的出现导致AOD明显增大;AOD日均值主要集中在0.1~0.4之间,日极大值在08~11时(北京时,下同)出现的频率最多,日极小值在12~13时、14~17时出现的频率最多。气象条件对AOD有明显的影响,在南风情况下AOD大,东风情况下AOD小,霾与晴天相比,AOD明显增大;对同一波段,风向差别引起的AOD的差异较晴天与霾相比引起的AOD的差异要小。  相似文献   

16.
2008年北京奥运会期间大气气溶胶物理特征分析   总被引:5,自引:0,他引:5  
应用MODIS卫星的气溶胶产品资料和地面的光学粒子计数器的资料,对比分析了北京地区2006、2007、2008年7~9月的气溶胶光学厚度、细粒子光学厚度、Angstrom指数、气溶胶粒子数浓度谱及体积谱,发现2008年北京奥运会期间(7月20日~9月20日)的气溶胶光学厚度比2006、2007年同期明显降低,气溶胶细模态光学厚度占总光学厚度的比上升,Angstrom指数上升,气溶胶细粒子数浓度没有明显相对变化,而粗粒子数浓度则减少约50%.利用大气标高,将MODIS反演的气溶胶柱的质量浓度转化为地面气溶胶质量浓度.用粒子计数器得到的体积谱,在假定气溶胶粒子密度的情况下,计算出其质量浓度.将这两种方法得到的气溶胶质量浓度与国家环境保护部公布的空气质量指数换算得到的可吸入颗粒物(PM10)质量浓度进行比较.结果表明:北京奥运期间空气质量总体达到了国家二级空气质量标准;与2006、2007年同期相比,2008年气溶胶PM10质量浓度明显下降,而这主要是由气溶胶粗粒子的减少引起的.  相似文献   

17.
利用2010—2012年间中国西北地区敦煌、民勤和塔中3个站点的CE-318太阳光度计观测资料,反演获得了气溶胶440 nm波段的大气气溶胶光学厚度(AOD)及440—870 nm波长指数(Alpha),同时结合Moderate Resolution Imaging Spectroradiometer(MODIS)卫星L1B产品及环境颗粒物监测仪Tapered Element Oscillating Microbalance(TEOM)观测的PM10数据,挑选出2010—2012年间沙尘天气特征明显的6个日期,并对这6天的气溶胶光学特性、PM10浓度变化特征及沙尘气溶胶来源进行了分析。研究结果表明:MODIS卫星图有明显沙尘天气过境时,当天的AOD值较高,Alpha值则较低,且AOD和Alpha表现出相反的变化趋势。这表明在这3个站点沙尘气溶胶占主导,PM10浓度变化与AOD变化趋势有较好的正相关性。Hybrid Single Particle Lagrangian Integrated Trajectory(HYSPLIT)后向轨迹分析表明,气团大多起源于塔克拉玛干沙漠或干旱、半干旱区。  相似文献   

18.
塔克拉玛干沙漠地区气溶胶光学厚度卫星遥感产品验证   总被引:2,自引:0,他引:2  
基于塔克拉玛干沙漠地区地基太阳光度计数据,系统验证2007~2008年星载多角度成像光谱仪(MISR)、中分辨率成像光谱仪(MODIS)和臭氧监测仪(OMI)气溶胶反演产品,旨在定量评估这些产品在我国沙漠地区的气溶胶光学厚度(AOD)反演精度。结果表明:MODIS/AOD的相关系数在4种产品中最高(0.91),OMI/AOD次之(0.87),其次为MISR/AOD(0.84),OMI/UVAI相关系数偏低(0.51)。MISR/AOD均方根误差(0.14)和平均偏差(-0.06)在4种反演产品中最低。与地基观测相比,MISR/AOD、MODIS/AOD系统偏低,OMI/AOD、OMI/UVAI系统偏高。在相同比较条件下(地基观测气溶胶光学厚度值限定在2.0以内),MISR的均方根误差和平均偏差在4种反演产品中最低,且相关系数也较高(0.84)。尽管存在诸多不同,但3种探测器气溶胶反演产品均能较好地展示该地区的气溶胶季节变化。塔克拉玛干沙漠春、夏季AOD较大,秋、冬季AOD相对较小。ngstrm波长指数的结果表明,春季(3~5月)最小(均值为0.11),夏季(6~8月)次之,秋季(9~11月)和冬季(12月至次年2月)较大(均值达到0.61),这表明在春、夏季气溶胶粒子偏大,秋、冬季气溶胶粒子偏小。此外,通过研究2000~2010年AOD年际变化表明,由于塔克拉玛干沙漠地区属于沙尘源区,气溶胶类型较为单一,所以总体来说,变化趋势不是较为明显。从反演结果来看,2003年的气溶胶含量为此10年中最高,年均值达到0.32;2005年的气溶胶含量在这10年中最低,年均值为0.28。  相似文献   

19.
通过自定义气溶胶模式,选取类大陆型气溶胶,结合兰州大学半干旱气候与环境观测站(SACOL)气溶胶实测资料建立的气溶胶数谱模式,反演兰州市及周边地区100 km×100 km范围内的气溶胶光学厚度(AOD).结果表明,在不同气溶胶模式下,AOD分布表现出一些共同特征:在兰州市西固区(工业区域)存在一个AOD高值区,兴隆山、刘家峡水库地区AOD值较低,而在榆中县城、临夏市等城镇区也表现出AOD值高于周边地区.对比反演结果与地面实测资料,发现采用自定义气溶胶模型反演的精度有很大提高.  相似文献   

20.
近年来,随着大气观测技术的快速发展,为冬季大雪年际变化研究提供了一些新的观测事实,增加了新的认识。认为大气环流对降雪的年际变化的影响只是重要方面之一。新的观测事实启示研究者,冬雪的年际变化和差异还可能与其他影响气候变化有更为复杂的因素——大气气溶胶特征有关。基于1980-2008年中国气象台站降水量资料和1980-2005年北方地区大气气溶胶光学厚度(AOD)资料,研究中国北方地区大范围多雨雪以及少雨雪年度变化与大气气溶胶分布特征的关系。结果表明:1980-2008年,中国北方地区典型的多雨雪年为1980、1984、1989、1993、1998、2003年和2006年;少雨雪年为1982-1983、1985-1988、1997、2001年和2005年。根据1980-2005年华北逐年冬半年雨雪总量与北方地区同期AOD相关分析,揭示中国北方地区雨雪年度变化与气溶胶光学厚度(AOD_550m)的年度变化存在正相关,相关系数达到0.001的显著性水平。同期资料AOD。。。分析表明,中国北方地区冬季多雨雪与少雨年大气气溶胶光学厚度差异显著,多雨雪年大气气溶胶光学厚度显著偏厚,中国华北北部、东北南部地区AOD正距平的平均值达到1×10。-5×10^-3,冬季北方地区少雨雪年与此差异显著,AOD为显著负距平,其平均值为-5×10^-3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号