首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A large-eddy simulation model with rotated coordinates and an open boundary is used to simulate the characteristics of katabatic flows over simple terrain. Experiments examine the effects of cross winds on the development of the slope-flow boundary layer for a steep (20°) slope and the role of drainage winds in preventing turbulence collapse on a gentle slope (1°). For the steep flow cases, comparisons between model average boundary-layer velocity, temperature deficit, and turbulence kinetic energy budget terms and tower observations show reasonable agreement. Results for different cross slope winds show that as the cross slope winds increase, the slope flow deepens faster and behaves more like a weakly stratified, sheared boundary layer. Analysis of the momentum budget shows that near the surface the flow is maintained by a balance between downslope buoyancy forcing and vertical turbulence flux from surface drag. Above the downslope jet, the turbulence vertical momentum flux reverses sign and acceleration of the flow by buoyancy is controlled by horizontal advection of slower moving ambient air. The turbulence budget is dominated by a balance between shear production and eddy dissipation, however, buoyancy and pressure transport both are significant in reducing the strength of turbulence above the jet. Results from the gentle slope case show that even a slight terrain variation can lead to significant drainage winds. Comparison of the gentle slope case with a flat terrain simulation indicates that drainage winds can effectively prevent the formation of very stable boundary layers, at least near the top of sloping terrain.  相似文献   

2.
For the first time, results from a high-resolution numerical simulation (with horizontal grid spacing of 35m) were used to reveal the detailed structure near an atmospheric katabatic jump over an idealized slope. The simulation represents flow over the slopes of Coats Land, Antarctica for austral winter conditions. The katabatic jump is characterised by an updraft with vertical velocities of order 1ms−1 and serves as a possible forcing mechanism for the gravity waves frequently observed over the ice shelves around the Antarctic. Results also indicate that strong turbulence is generally confined within a mixing zone near the top of the katabatic layer upstream of the jump and extends downstream through the top of the strong updraft associated with the jump. Detailed analyses of momentum and heat budgets across the katabatic jump indicate that, upstream of the jump, turbulent mixing is important in decelerating the upper part of the katabatic layer, while within the jump the upslope pressure gradient force associated with the pool of cold air plays a role in decelerating the flow near the surface. The heat budget near the jump reveals a simple two-term balance: the turbulent heat flux divergence is balanced by the advection. A comparison of model results with available theories indicates that mixing between layers of different potential temperature structure indeed plays some role in the development of katabatic flow jumps, especially for strong jumps. Theories used to study katabatic jumps should include this mixing process, of which the amount depends on the intensity of the jump. A conceptual model of a katabatic jump, including the main dynamical processes, is constructed from these detailed analyses.  相似文献   

3.
We investigate a Cartesian-mesh immersed-boundary formulation within an incompressible flow solver to simulate laminar and turbulent katabatic slope flows. As a proof-of-concept study, we consider four different immersed-boundary reconstruction schemes for imposing a Neumann-type boundary condition on the buoyancy field. Prandtl’s laminar solution is used to demonstrate the second-order accuracy of the numerical solutions globally. Direct numerical simulation of a turbulent katabatic flow is then performed to investigate the applicability of the proposed schemes in the turbulent regime by analyzing both first- and second-order statistics of turbulence. First-order statistics show that turbulent katabatic flow simulations are noticeably sensitive to the specifics of the immersed-boundary formulation. We find that reconstruction schemes that work well in the laminar regime may not perform as well when applied to a turbulent regime. Our proposed immersed-boundary reconstruction scheme agrees closely with the terrain-fitted reference solutions in both flow regimes.  相似文献   

4.
The flow and turbulence quantities governing dispersion in katabatic flows vary with both height and downslope distance. This variation cannot be accounted for in conventional plume dispersion models. In this study, three random-walk models of varying complexity are formulated to simulate dispersion in katabatic flows, and their strengths and weaknesses are discussed. The flow and turbulence parameters required by these models are determined from a high-resolution two-dimensional katabatic flow model based on a turbulent kinetic energy closure. Random-walk model calculations have been performed for several values of source height and slope angle to examine the influence of these parameters on dispersion. Finally, we simulated the perfluorocarbon and heavy methane tracer releases for Night 4 of the 1980 ASCOT field study over a nearly two-dimensional slope in Anderson Creek Valley, California. The observed peak concentrations are generally well-predicted. The effects of the pooling of the drainage air could not be taken into account in our katabatic flow model and, consequently, the predicted concentrations decay much more rapidly with time than the observed values.  相似文献   

5.
The analysis of katabatic flows is often complicated by heterogeneity in surface characteristics. This study focuses on an idealized type of katabatic flow driven by a simple form of inhomogeneous surface forcing: a buoyancy or buoyancy flux that varies down the slope as a top-hat profile (cold strip). We consider the two-dimensional Boussinesq system of governing flow equations with the slope angle, Brunt–Väisälä frequency, and coefficients of eddy viscosity and diffusivity treated as constants. The steady-state problem is solved analytically in a linearized boundary-layer framework. Key flow structures are a primary katabatic jet (essentially the classical one-dimensional Prandtl jet), a rotor-like feature straddling the upslope end of the strip, and two nearly horizontal jets: an inward jet of environmental air feeding into the primary jet on the upslope end of the strip and an outward jet resulting from the intrusion of the primary katabatic jet into the environment on the downslope end of the strip. Next, the corresponding nonlinear initial value problem is solved numerically until a steady state is reached at low levels. The main features of the linear solution are seen in the numerical results, but with some notable differences: (i) the primary jet in the numerical simulation requires a longer distance to attain a one-dimensional boundary-layer structure and extends further downslope off the strip before intruding into the environment; (ii) the numerically simulated outward environmental jet is narrower and more intense than the inward jet, and has a pronounced wave-like structure.  相似文献   

6.
7.
The convective boundary layer (CBL) with a wide range of stability is simulated experimentally using a thermally stratified wind tunnel, and numerically by direct numerical simulation (DNS). The turbulence structures and flow characteristics of various CBL flows, capped by a strong temperature inversion and affected by surface shear, are investigated. The various vertical profiles of turbulence statistics similar to those from the observed CBL in the field are successfully simulated in both the wind-tunnel experiment and in DNS. The comparison of the wind-tunnel data and DNS results with those of atmospheric observations and water-tank studies shows the crucial dependence of the turbulence statistics in the upper part of the layer on the strength of the inversion layer, as well as the modification of the CBL turbulence regime by the surface shear.  相似文献   

8.
The Regional Atmospheric Modeling System (RAMS), which is a non-hydrostatic numerical model, has been used to investigate the impact of terrain shape and large-scale forcing on the Antarctic surface-wind regime, focusing on their roles in establishing favorable flow conditions for the formation of katabatic flow jumps. A series of quasi-2D numerical simulations were conducted over idealized slopes representing the slopes of Antarctica during austral winter conditions. Results indicate that the steepness and variations of the underlying slope play a role in the evolution of near-surface flows and thus the formation of katabatic flow jumps. However, large-scale forcing has a more noticeable effect on the occurrence of this small-scale phenomenon by establishing essential upstream and downstream flow conditions, including the upstream supercritical flow, the less stably stratified or unstable layer above the cold katabatic layer, as well as the cold-air pool located near the foot of the slope through an interaction with the underlying topography. Thus, the areas with steep and abrupt change in slopes, e.g. near the coastal areas of the eastern Antarctic, are preferred locations for the occurrence of katabatic flow jumps, especially under supporting synoptic conditions.  相似文献   

9.
Turbulence structures in the katabatic flow in the stable boundary layer (SBL) over the ice sheet are studied for two case studies with high wind speeds during the aircraft-based experiment KABEG (Katabatic wind and boundary layer front experiment around Greenland) in the area of southern Greenland. The aircraft data allow the direct determination of turbulence structures in the katabatic flow. For the first time, this allows the study of the turbulence structure in the katabatic wind system over the whole boundary layer and over a horizontal scale of 80 km.The katabatic flow is associated with a low-level jet (LLJ), with maximum wind speeds up to 25 m s-1. Turbulent kinetic energy (TKE) and the magnitude of the turbulent fluxes show a strong decrease below the LLJ. Sensible heat fluxes at the lowest level have values down to -25 W m-2. Latent heat fluxes are small in general, but evaporation values of up to +13 W m-2 are also measured. Turbulence spectra show a well-defined inertial subrange and a clear spectral gap around 250-m wavelength. While turbulence intensity decreases monotonously with height above the LLJ for the upper part of the slope, high spectral intensities are also present at upper levels close to the ice edge. Normalized fluxes and variances generally follow power-law profiles in the SBL.Terms of the TKE budget are computed from the aircraft data. The TKE destruction by the negative buoyancy is found to be very small, and the dissipation rate exceeds the dynamical production.  相似文献   

10.
Wind-tunnel experiments in a thermally stratified wind tunnel and direct numerical simulations were performed to simulate the thermal internal boundary layer (TIBL) that developed over a coastal area in a sea-breeze flow. The results of the simulations were analyzed to investigate turbulence structure in the TIBL. To study the effects of the atmospheric stability over the sea on the TIBL, two vertical profiles of temperature were created in the upstream portion of the wind-tunnel experiment and the direct numerical simulation. Turbulence statistics of the TIBL changed significantly according to the temperature profile over the sea, indicating that the stability of the flow over the sea has a significant effect on the structure and turbulence characteristics of the TIBL. Furthermore, the TIBL heights were estimated from the vertical profiles of the local Richardson number. The estimated TIBL heights agreed with those predicted by a pre-existing relation, suggesting that both the wind-tunnel experiment and the direct numerical simulation accurately reproduced the growth of the TIBL.  相似文献   

11.
Evening and Morning Transition of Katabatic Flows   总被引:1,自引:1,他引:0  
An experimental investigation of the evening and morning transition phases of katabatic slope flows has been conducted to identify the mechanisms for their development and destruction over an isolated slope. The momentum and energy equations of the flow have been used to describe these mechanisms for the particular topographic features of the studied slope, and to outline the differences from the dynamics of well-developed simple slope flows. In the lowest portion of the slope, frontal characteristics have been identified in early evening periods when the local pre-existing near-surface thermal structure does not impose a katabatic acceleration. The frontal shape is determined by the near-surface thermal stability and ambient wind. The flow initiation is distinctly different when it is linked to the local surface cooling, in which case it develops gradually and produces a slight local warming.The erosion of the katabatic layer at mid-slope precedes that at the foot and is closely linked to dilution of the local surface inversion. The flow erosion at the foot is often delayed, as the warming of air proceeds uniformly at all heights near the ground, so maintaining the inversion due to warming produced by mixing and advective processes linked to the upslope flow development. The latter initiates first at mid-slope and then at the foot, where for a non-negligible time period it flows over the persistent katabatic flow. The prerequisite for the development of this structure is the maintenance of a shallow inversion in the first 2–3 m above the ground surface.The morning dilution of the katabatic flow is apparently different from common experience over simple slopes and may be attributed to the steep upper portion of the slope in association with its easterly orientation, which results in strong non-uniformity of the solar heating along the slope.  相似文献   

12.
地形影响的飞机颠簸及其数值仿真实验   总被引:1,自引:1,他引:1  
李子良  黄仪方 《气象》2006,32(11):32-35
首先利用中尺度数值模式ARPS模拟气流过山生成飞行数值仿真所需要的风场,然后利用飞机载荷因数变量方程进行飞机飞行的数值仿真试验。研究结果表明,气流过山产生的山脉重力波由于风切变临界层破碎,一方面能在对流层产生较强的湍流引起晴空飞机颠簸,另一方面也能在山脉背风面产生强烈下坡风,背风转子环流及低空湍流,影响飞机的起飞和着陆。揭示了飞机在过山脉地形背风面所产生的大气湍流中飞行时引起飞机颠簸的物理机制,有助于增强飞机颠簸的预测能力和飞行气象保障能力。  相似文献   

13.
Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.  相似文献   

14.
A parameterization of the nonhydrostatic pressure was modified and adapted to a nonlinear numerical model of the neutral atmospheric boundary layer. A hydrostatic model and the quasinonhydrostatic version were used to simulate neutral flow over a symmetrical hill of uniform roughness. Mean-flow quantities and some turbulence characteristics of the flow from both models are presented. These results were compared with observations, analytic theory, and other numerical models.The quasi-nonhydrostatic method produced qualitative features commonly observed in such flows that the hydrostatic model could not simulate. For instance, the observed velocity reduction at the hill base and the speedup at the summit both were simulated by the quasi-nonhydrostatic model. However, computation of vertical velocities from the incompressible continuity equation is inadequate above regions of recirculation and presents a limitation to the method.Journal Paper No. J-12741 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2779.  相似文献   

15.
Second-Order Modelling of Turbulence in Katabatic Flows   总被引:1,自引:1,他引:0  
A complete one-dimensional second-order closure model is used to simulate katabatic flows observed on glaciers and ice caps. The model is tested with two different closure assumptions for the viscous dissipation, one based on a prognostic equation for and the other on a diagnostic buoyant length scale. Both formulations give quite similar results. Model simulations are compared to observations made over sloping ice surfaces during periods dominated by katabatic flow. In general, good agreement is found for both mean wind and temperature profiles as well as eddy correlation measurements. It is also found that the turbulent transport terms play an important role in katabatic flows as opposed to the classical stable boundary layer where these terms are usually ignored. Even the turbulent transport of temperature variance, which leads to the well-known countergradient term in unstable boundary layers, is relatively important for modelling the observed temperature profiles. The effect of these terms on the flux-profile relationships, using observed and simulated profiles, is also discussed.  相似文献   

16.
The vertical velocity at the top of Ekman layer caused by katabatic winds is proposed and deduced. By com-puting actual data we jet a distribution of the velocities over Antarctica. The distribution plays a positive role in maintaining the cyclone and anticyclone over Antarctica.  相似文献   

17.
森林下垫面陆面物理过程及局地气候效应的数值模拟试验   总被引:5,自引:0,他引:5  
文中基于大气边界层和植被冠层微气象学基本原理 ,建立了一个森林植被效应的陆面物理过程和二维大气边界层数值模式。并应用该模式进行了植被和土壤含水量等生物和生理过程在陆面过程和局地气候效应方面的数值模拟试验。所得数值模拟试验结果与实际情况相吻合。结果表明 ,应用该模式可获得植被温度、植被冠层内空气温度、地表温度日变化特征 ;森林下垫面大气边界层风速、位温、比湿、湍流交换系数的时空分布和日变化特征。该模式还可应用于不同下垫面 ,模拟陆面物理过程与大气边界层相互作用机制及其局地气候效应的研究 ,这将为气候模式与生物圈的耦合研究奠定一个良好的基础。  相似文献   

18.
Land surface parameterization schemes play a significant role in the accuracy of meso-local scale numerical models by accounting for the exchange of energy and water between the soil and the atmosphere. The role of land surface processes during large-scale cold-pooling events was studied with two land surface schemes (LSMs) in the Advanced Research Weather Forecasting model (ARW). Model evaluation was complex due to the surface and boundary layer interactions at different temporal and spatial scales as revealed by a scale dependent variance analysis. Wavelet analysis was used for the first time to analyze the model errors with specific focus on land surface processes. The ARW model was also evaluated for the formation of a low-level jet (LLJ). It is shown that vertical resolution in the model boundary layer played a significant role in determining the characteristics of LLJ, which influenced the lower boundary layer structure and moisture distribution. The results showed that the simulated low-level jet over southern Georgia was sensitive to the land surface parameterization and led to a significant difference in the boundary layer exchange. The jet shear played a crucial role in the maintenance of turbulence and weak shear caused excessive radiative cooling leading to unrealistic cold pools in the model. The results are important for regional downscaling as the excessive cold pools that are simulated in the model can go unnoticed.  相似文献   

19.
Impacts of different terrain configurations on the general behaviour of idealised katabatic flows are investigated in a numerical model study. Various simplified terrain models are applied to unveil modifications of the dynamics of nocturnal cold drainage of air as a result of predefined topographical structures. The generated idealised terrain models encompass all major topographical elements of an area in the tropical eastern Andes of southern Ecuador and northern Peru, and the adjacent Amazon. The idealised simulations corroborate that (i) katabatic flows develop over topographical elements (slopes and valleys), that (ii) confluence of katabatic flows in a lowland basin with a concave terrainline occur, and (iii) a complex drainage flow system regime directed into such a basin can sustain the confluence despite varying slope angles and slope distances.  相似文献   

20.
Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号