首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Summary The Oklahoma Atmospheric Surface-layer Instrumentation System (OASIS) is a recently-developed observational system that collects, archives, and quality controls atmospheric, surface, and soil data in real-time from 90 stations across Oklahoma. Ten of the 90 sites, termed “super sites”, are equipped with additional sonic anemometry and four-component net radiometers to provide complete observations of the surface energy balance. Oklahoma Mesonet and OASIS data are used in this study to validate the sensitivity and accuracy of a land-surface scheme within a numerical prediction model. The Advanced Regional Prediction System (ARPS) is a three-dimensional, nonhydrostatic mesoscale model developed by the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma. The land-surface model (LSM) used within ARPS is the Interactions Soil Biosphere Atmosphere (ISBA) scheme. Mesonet and OASIS data collected from the super site located in Norman, Oklahoma, are used as verification for the ISBA. Research presented in this study outlines the challenges in developing, maintaining, and using in-situ data for model validation. Such problems as instrument error, surface heterogeneity, and non-closure of the surface energy budget limit data accuracy. Preliminary results of model validation focus on the sensitivity of the soil physics within the ISBA scheme. Model sensitivity to vegetation cover, surface roughness, and soil type are investigated. Furthermore, several recent improvements to ISBA are evaluated and compared to observations. This study concludes that the sensitivity of the ISBA to a priori soil and vegetation type is detrimental for this scheme to be used in a mesoscale model without improved treatment of surface heterogeneity. Received November 18, 2001 Revised December 28, 2001  相似文献   

3.
Based on the existing land-surface schemes and models,an improved Land-surface Process Model(LPM-ZD)has been developed.It has the following major characteristics:(1)The combination of physical equations and empirical analytical formulae are used to construct the governing equations of soil temperature and moisture.Higher resolution of model level and physical equations are adopted for the upper soil layers,and for the lower soil layers,lower resolution of model level is adopted and empirical analytical formulae are used.(2)In land surface hydrological process,the sub-grid distribution of rainfall and its effects are taken into account.(3)A simple snow cover submodel has been used,which includes effects of snow cover on soil thermodynamics and hydrology,as well as albedo.By use of this model and three groups of point observation data,a series of "off-line" tests have been carried out.The simulation results indicate that land-surface process model has good performance and can well simulate diurnal and seasonal variation of land surface processes for many kinds of land surface covers(forest,grass,crops and desert) in different climate zone.The results simulated by the model are consistent with the observations.Later,by use of one group of observation data and the model,a series of sensitivity experiments have been done.It is shown that the model is much sensitive to some parameters,such as initial soil moisture,vegetation physical parameters as well as the proportion of the grid covered with rain.Therefore it is much important for land-surface process model to define these parameters as accurately as possible.  相似文献   

4.
 Global soil moisture data of high quality and resolution are not available by direct observation, but are useful as boundary and initial conditions in comprehensive climate models. In the framework of the GSWP (Global Soil Wetness Project), the ISBA land-surface scheme of Météo-France has been forced with meteorological observations and analyses in order to study the feasibility of producing a global soil wetness climatology at a 1°×1° horizontal resolution. A control experiment has been performed from January 1987 to December 1988, using the ISLSCP Initiative I boundary conditions. The annual mean, the standard deviation and the normalised annual harmonic of the hydrologic fields have been computed from the 1987 monthly results. The global maps which are presented summarise the surface hydrologic budget and its annual cycle. The soil wetness index and snow cover distributions have been compared respectively to the results of the ECMWF reanalysis and to satellite and in situ observations. The simulated runoff has been validated against a river flow climatology, suggesting a possible underestimation over some large river basins. Besides the control run, other simulations have been performed in order to study the sensitivity of the hydrologic budget to changes in the surface parameters, the precipitation forcing and the runoff scheme. Such modifications have a significant impact on the partition of total precipitation into evaporation and runoff. The sensitivity of the results suggests that soil moisture remains one of the most difficult climatological parameters to model and that any computed soil wetness climatology must be considered with great caution. Received: 3 January 1997 / Accepted: 19 August 1987  相似文献   

5.
干旱区天气、气候数值模拟的研究进展   总被引:5,自引:0,他引:5  
干旱区的气候模拟有着很强特殊性。气候模式是研究和探讨干旱区形成物理机制的有效手段和工具。介绍了近年来国内外干旱气候数值模拟和试验的研究与进展.总结和评述了陆面过程中地表反照率、土壤湿度、植被状况的参数化和对气候的影响.讨论和阐述陆面过程在气候模拟中的重要性。对干旱区的气候和天气灾害的数值模式模拟研究作了一些评述,并对干旱区数值模拟的有关问题进行了讨论和展望。指出干旱区陆面过程的深入研究和干旱区陆面参数的标定,是改进干旱区气候模拟的重要途径。  相似文献   

6.
Improving and validating land surface models based on integrated observations in deserts is one of the challenges in land modeling. Particularly, key parameters and parameterization schemes in desert regions need to be evaluated in-situ to improve the models. In this study, we calibrated the land-surface key parameters and evaluated several formulations or schemes for thermal roughness length (z 0h ) in the common land model (CoLM). Our parameter calibration and scheme evaluation were based on the observed data during a torrid summer (29 July to 11 September 2009) over the Taklimakan Desert hinterland. First, the importance of the key parameters in the experiment was evaluated based on their physics principles and the significance of these key parameters were further validated using sensitivity test. Second, difference schemes (or physics-based formulas) of z 0h were adopted to simulate the variations of energy-related variables (e.g., sensible heat flux and surface skin temperature) and the simulated variations were then compared with the observed data. Third, the z 0h scheme that performed best (i.e., Y07) was then selected to replace the defaulted one (i.e., Z98); the revised scheme and the superiority of Y07 over Z98 was further demonstrated by comparing the simulated results with the observed data. Admittedly, the revised model did a relatively poor job of simulating the diurnal variations of surface soil heat flux, and nighttime soil temperature was also underestimated, calling for further improvement of the model for desert regions.  相似文献   

7.
A land-process scheme has been incorporated in a vertical one-dimensional time-dependent atmospheric model and numerical experiments have been performed with the coupled model to examine influences of soil wetness and vegetation on climate changes associated to thermal forcing.It is showed that response of land-surface temperature to the thermal forcing becomes small with increase of soil water content and vegetation cover.Furthermore,the response is more obvious in arid climate region than in humid one.The result also shows that there exist two patterns of corresponding relation between variations in air temperature and humidity on the land surface in response to hydrologic and thermal focing.  相似文献   

8.
The regional climate model (RegCM4) is customized for 10-year climate simulation over Indian region through sensitivity studies on cumulus convection and land surface parameterization schemes. The model is configured over 30° E–120° E and 15° S–45° N at 30-km horizontal resolution with 23 vertical levels. Six 10-year (1991–2000) simulations are conducted with the combinations of two land surface schemes (BATS, CLM3.5) and three cumulus convection schemes (Kuo, Grell, MIT). The simulated annual and seasonal climatology of surface temperature and precipitation are compared with CRU observations. The interannual variability of these two parameters is also analyzed. The results indicate that the model simulated climatology is sensitive to the convection as well as land surface parameterization. The analysis of surface temperature (precipitation) climatology indicates that the model with CLM produces warmer (dryer) climatology, particularly over India. The warmer (dryer) climatology is due to the higher sensible heat flux (lower evapotranspiration) in CLM. The model with MIT convection scheme simulated wetter and warmer climatology (higher precipitation and temperature) with smaller Bowen ratio over southern India compared to that with the Grell and Kuo schemes. This indicates that a land surface scheme produces warmer but drier climatology with sensible heating contributing to warming where as a convection scheme warmer but wetter climatology with latent heat contributing to warming. The climatology of surface temperature over India is better simulated by the model with BATS land surface model in combination with MIT convection scheme while the precipitation climatology is better simulated with BATS land surface model in combination with Grell convection scheme. Overall, the modeling system with the combination of Grell convection and BATS land surface scheme provides better climate simulation over the Indian region.  相似文献   

9.
Both observational studies and numerical experiments demonstrate the sensitivity of the atmosphere to variations in the extent and mass of snow cover. There is therefore a need for simple but realistic snow parameterizations in forecast and climate models. This study describes a new physically-based snow hydrology for use in the Météo-France climate model, together with the ISBA land-surface scheme. A restricted number of parameters has been added, while preserving a single surface energy budget. The ageing process of the snow pack has been introduced through prognostic equations for snow density and snow albedo. Snowmelt computation has been modified over partially snow-covered and vegetated areas. The new scheme has been validated against field measurements in stand-alone simulations forced by observed meteorological conditions. The results show a strong improvement in the model's performance, thereby suggesting that a simple one-layer snow model is able to reproduce the main physical mechanisms governing the snow pack evolution. Part II of the present study will concern the validation in a 3-D experiment within the Météo-France climate model.  相似文献   

10.
中国地表月平均反照率的遥感反演   总被引:20,自引:0,他引:20  
徐兴奎  刘素红 《气象学报》2002,60(2):215-220
地表特征和下垫面物理性质在时空分布上的差异 ,造成地表能量分布的不均 ,地球表面的半球反射在气候领域是一个非常重要的参数 ,它在地 气能量交换中决定着能量在地 气之间的分配比率。反照率随地表覆盖类型的变化具有很大的差异 ,而这往往是形成区域小气候差异的原因。文中通过统计和双向反射模型 ,应用NOAA14 AVHRR数据并结合地理信息系统 ,反演计算了 1997年中国月平均反照率的分布 ,并对结果做了分析检验。  相似文献   

11.
Over recent years, many numerical studies have suggested that the land surface hydrology contributes to atmospheric variability and predictability on a wide range of scales. Conversely, land surface models (LSMs) have been also used to study the hydrological impacts of seasonal climate anomalies and of global warming. Validating these models at the global scale is therefore a crucial task, which requires off-line simulations driven by realistic atmospheric fluxes to avoid the systematic biases commonly found in the atmospheric models. The present study is aimed at validating a new land surface hydrology within the ISBA LSM. Global simulations are conducted at a 1° by 1° horizontal resolution using 3-hourly atmospheric forcings provided by the Global Soil Wetness Project. Compared to the original scheme, the new hydrology includes a comprehensive and consistent set of sub-grid parametrizations in order to account for spatial heterogeneities of topography, vegetation, and precipitation within each grid cell. The simulated runoff is converted into river discharge using the total runoff integrating pathways (TRIP) river routing model (RRM), and compared with available monthly observations at 80 gauging stations distributed over the world’s largest river basins. The simulated discharges are also compared with parallel global simulations from five alternative LSMs. Globally, the new sub-grid hydrology performs better than the original ISBA scheme. Nevertheless, the improvement is not so clear in the high-latitude river basins (i.e. Ob, MacKenzie), which can be explained by a too late snow melt in the ISBA model. Over specific basins (i.e. Parana, Niger), the quality of the simulated discharge is also limited by the TRIP RRM, which does not account for the occurrence of seasonal floodplains and for their significant impact on the basin-scale water budget.  相似文献   

12.
A land-process scheme has been incorporated in a vertical one-dimensional time-dependent atmospheric modeland numerical experiments have been performed with the coupled model to examine influences of soil wetness and vege-tation on climate changes associated to thermal forcing.It is showed that response of land-surface temperature to thethermal forcing becomes small with increase of soil water content and vegetation cover.Furthermore,the response ismore obvious in arid climate region than in humid one.The result also shows that there exist two patterns of corre-sponding relation between variations in air temperature and humidity on the land surface in response to hydrologic andthermal focing.  相似文献   

13.
The World Climate Research Programme Project for Intercomparison of Land-surface Parametrization Schemes (PILPS) is an on-going international intercomparison of land surface schemes designed for use in climate modelling and weather prediction. The five phases of PILPS are described in this work with an indication of the status of each. Phase 0 documented the status of land surface schemes. Phase 1 performed a series of off-line tests using synthetic atmospheric forcing. Phase 2 exploited observational data in off-line tests. Phase 3 was comprised of coupled tests within the Atmospheric Model Intercomparison Project (AMIP) project and finally Phase 4 will consider the performance of land-surface schemes when coupled to their host climate models in fully coupled evaluations. Results from Phase 1 indicate that there is a wide range among models. Phase 2 indicates that while some models are consistent with observations, there remains a large range among models and that many diverge greatly from observations. PILPS phases 2(a) and 2(b) results suggest that individual land-surface schemes capture specific aspects of the complex system with reasonable accuracy but no one scheme captures the whole system satisfactorily and consistently. In Phase 3 the intercomparison of PILPS schemes as a component of global atmospheric circulation models is being conducted jointly with the AMIP as diagnostic subproject number 12. Preliminary results suggest that results differ by about the same range as in the offline experiments in Phases 1 and 2. Phase 4 will couple selected land-surface schemes to the USA's National Center for Atmospheric Research climate system model and to the Australian Bureau of Meteorology limited area model. Received: 24 October 1995 / Accepted: 28 May 1996  相似文献   

14.
Sensitivity experiment is an important method to study the effect on regional climate due toseasonal variation of land surface parameters.Using China Regional Climate Model(CRCM)nested in CCM1.we first simulate Chinese regional climate,then two numerical sensitivityexperiments on the effect of vegetation and roughness length are made.The results show that:(1)If the vegetation is replaced with the monthly data of 1997.precipitation and land-surfacetemperature are both changed clearly,precipitation decreases and land surface temperatureincreases,but there is no regional correspondence between these changes.And the results aremuch better than the results when climate average vegetation was used in the CRCM.(2)If theroughness length is replaced with the monthly data of 1997,there is significant change on landsurface temperature,and there is very good regional correspondence between these changes.Butthe effect on precipitation is very small.  相似文献   

15.
16.
 The impact of climate change on the hydrology of continental surfaces is critical for human activities but the response of the surface to this perturbation may also affect the sensitivity of the climate. This complex feedback is simulated in general circulation models (GCMs) used for climate change predictions by their land-surface schemes. The present study attempts to quantify the uncertainty associated with these schemes and what impact it has on our confidence in the simulated climate anomalies. Four GCMs, each coupled to two different land-surface schemes, are used to explore the spectrum of uncertainties. It is shown that, in this sample, surface processes have a significant contribution to our ability to predict surface temperature changes and perturbations of the hydrological cycle in an environment with doubled greenhouse gas concentration. The results reveal that the uncertainty introduced by land-surface processes in the simulated climate is different from its impact on the sensitivity of GCMs to climate change, indeed an alteration of the surface parametrization with little impact on model climate can affect sensitivity significantly. This result leads us to believe that the validation of land-surface schemes should not be limited to the current climate but should also cover their sensitivity to variations in climatic forcing. Received: 24 June 1999 / Accepted: 20 April 2000  相似文献   

17.
This study examines the impact of a new land-surface parameterization and a river routing scheme on the hydrology of the Amazon basin, as depicted by the NASA/Goddard Institute of Space Studies (GISS) global climate model (GCM). The more physically realistic land surface scheme introduces a vegetation canopy resistance and a six-layer soil system. The new routing scheme allows runoff to travel from a river's headwater to its mouth according to topography and other channel characteristics and improves the timing of the peak flow. River runoff is examined near the mouth of the Amazon and for all of its sub-basins. With the new land-surface parameterization, river run-off increases significantly and is consistent with that observed in most basins and at the mouth. The representation of the river hydrology in small basins is not as satisfactory as in larger basins. One positive impact of the new land-surface parameterization is that it produces more realistic evaporation over the Amazon basin, which was too high in the previous version of the GCM. The realistic depiction of evaporation also affects the thermal regime in the lower atmosphere in the Amazon. In fact, the lower evaporation in some portions of the basin reduces the cloudiness, increases the solar radiation reaching the ground, increases the net radiation at the surface, and warms the surface as compared to observations. Further GCM improvement is needed to obtain a better representation of rainfall processes.  相似文献   

18.
陆面水文过程研究进展   总被引:11,自引:2,他引:9  
本文回顾了近年来中国科学院大气物理研究所在陆面水文过程的观测、模式发展以及陆气相互作用研究等方面所取得的重要研究成果。首先概述了近年来在中国区域所开展的陆气相互作用野外观测试验,通过资料分析揭示了国际上现有陆面模式对干旱/半干旱地区陆气相互作用模拟的偏差,指出典型干旱/半干旱区陆面过程参数修正的必要性;随后重点描述了陆面过程模式中积雪覆盖度和冻土参数化方案的发展,中国区域土壤湿度的时空分布特征及其对区域气候的影响,以及中国区域大尺度水文模式的研制和应用等;最后给出了陆面水文过程研究的趋势和发展方向的展望。  相似文献   

19.
The aim of this study was to develop an advanced parameterization of the snow-free land surface albedo for climate modelling describing the temporal variation of surface albedo as a function of vegetation phenology on a monthly time scale. To estimate the effect of vegetation phenology on snow-free land surface albedo, remotely sensed data products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra platform measured during 2001 to 2004 are used. The snow-free surface albedo variability is determined by the optical contrast between the vegetation canopy and the underlying soil surface. The MODIS products of the white-sky albedo for total shortwave broad bands and the fraction of absorbed photosynthetically active radiation (FPAR) are analysed to separate the vegetation canopy albedo from the underlying soil albedo. Global maps of pure soil albedo and pure vegetation albedo are derived on a 0.5° regular latitude/longitude grid, re-sampling the high-resolution information from remote sensing-measured pixel level to the model grid scale and filling up gaps from the satellite data. These global maps show that in the northern and mid-latitudes soils are mostly darker than vegetation, whereas in the lower latitudes, especially in semi-deserts, soil albedo is mostly higher than vegetation albedo. The separated soil and vegetation albedo can be applied to compute the annual surface albedo cycle from monthly varying leaf area index. This parameterization is especially designed for the land surface scheme of the regional climate model REMO and the global climate model ECHAM5, but can easily be integrated into the land surface schemes of other regional and global climate models.  相似文献   

20.
The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model. Reducing the grid spacing from about 350 km to about 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution. It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution seen across climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号