首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Influence of sea surface temperatures on air temperatures in the tropics   总被引:1,自引:0,他引:1  
Interannual variations of tropical tropospheric temperatures are closely related to sea surface temperature (SST) changes in the tropical eastern Pacific (TEP). This study investigated the physical mechanisms for such an air-sea interrelationship. SSTs and latent heat flux were analyzed to find the unique properties of their variations during El Niño. A Gill-type model was used to investigate how a local heat source communicates with the entire tropics. Radiative fluxes in the tropics were evaluated to search for the factors limiting air temperature increases when warm SSTs remain in the TEP. We found that interannual variabilities of SST and latent heat flux are dominated by the variations in the TEP region. The SST variations there have three unique properties that allow the ocean to influence the atmosphere effectively: large magnitude, long persistence, and spatial coherence. The Gill-type model shows that a local heat source can warm the entire tropical troposphere when the heat source is near the equator. Released latent heat in the heat source region and forced adiabatic subsidence elsewhere in the tropics warm the atmosphere. As a result, a local heat source warms the entire tropical strip. The forced subsidence depresses clouds, allowing more infrared radiation to leave the atmosphere and preventing further atmospheric warming when warm SSTs remain in the TEP. This finding is verified by reanalysis data from the National Centers for Environmental Prediction.  相似文献   

2.
A prominent weakening in equatorial Atlantic sea surface temperature (SST) variability, occurring around the year 2000, is investigated by means of observations, reanalysis products and the linear recharge oscillator (ReOsc) model. Compared to the time period 1982–1999, during 2000–2017 the May–June–July SST variability in the eastern equatorial Atlantic has decreased by more than 30%. Coupled air–sea feedbacks, namely the positive Bjerknes feedback and the negative net heat flux damping are important drivers for the equatorial Atlantic interannual SST variability. We find that the Bjerknes feedback weakened after 2000 while the net heat flux damping increased. The weakening of the Bjerknes feedback does not appear to be fully explainable by changes in the mean state of the tropical Atlantic. The increased net heat flux damping is related to an enhanced response of the latent heat flux to the SST anomalies (SSTa). Strengthened trade winds as well as warmer SSTs are suggested to increase the air–sea specific humidity difference and hence, enhancing the latent heat flux response to SSTa. A combined effect of those two processes is proposed to be responsible for the weakened SST variability in the eastern equatorial Atlantic. The ReOsc model supports the link between reduced SST variability, weaker Bjerknes feedback and stronger net heat flux damping.  相似文献   

3.
蒋全荣  郑定英 《气象科学》1997,17(2):143-150
分析表明,北太平洋中纬度地区海水表层铅直热通量收支的分布特征与海流密切有关。暖流区的受热相对较小或失热相对较大,冷流区则反之。海水表层铅直热通量收支的季节变化分别具有一年、半年和四个月三种周期,并分别与太阳辐射、海流以及大气环流等相系。海温变化的滞后时间,基本场为2个月,扰动场为1个月。  相似文献   

4.
The latest version of sea spray flux parameterization scheme developed by Andreas is coupled with the PSU/NCAR model MM5 in this paper. A western Pacific tropical cyclone named Nabi in 2005 is simulated using this coupled air-sea spray modeling system to study the impacts of sea spray evaporation on the evolution of tropical cyclones. The results demonstrate that sea spray can lead to a significant increase of heat fluxes in the air-sea interface, especially the latent heat flux, the maximum of which can increase by up to about 35% - 80% The latent heat flux seems to be more important than the sensible heat flux for the evolution of tropical cyclones. Regardless of whether sea spray fluxes have been considered, the model can always simulate the track of Nabi well, which seems to indicate that sea spray has little impact on the movement of tropical cyclones. However, with sea spray fluxes taken into account in the model, the intensity of a simulated tropical cyclone can have significant increase. Due to the enhancement of water vapor and heat from the sea surface to the air caused by sea spray, the warm core structure is better-defined, the minimum sea level pressure decreases and the vertical speed is stronger around the eye in the experiments, which is propitious to the development and evolution of tropical cyclones.  相似文献   

5.
Through the use of the hourly wind, air temperature and humidity, sea surface temperature data measured on board the observing vessel Moana Wave and buoy in the warm pool of western Pacific during the IOP of TOGA COARE, we compute the fluxes over sea surface and analyze the characteristics of the variation ofthe latent heat flux with sea surface temperature. During weak rather than strong wind periods a maximum valueof latent heat flux appears at some points of SST, which is caused mainly by the variations of wind, then by the humidity difference between air and sea and the transfer coefficient with SAT. Using correlation analysis. we also analyze the relationship between the fluxes and meteorological elements during weak wind periods. wester lywind burst periods, and convective disturbed periods etc. The main conclusions are that the latent heat flux ismainly determined by wind, sensible heat flux by the potential temperature difference between air and sea and the momentum flux by wind. The precipitation affects the sensible heat flux through the potential temperature difference and wind.  相似文献   

6.
Substantial reduction in Arctic sea ice in recent decades has intensified air-sea interaction over the Arctic Ocean and has altered atmospheric states in the Arctic and surrounding high-latitude regions. This study has found that the atmospheric responses related to Arctic sea-ice melt in the cold season (October–March) depend on sea-ice fraction and are very sensitive to in situ sea surface temperature (SST) from a series of atmospheric general circulation model (AGCM) simulations in which multiple combinations of SSTs and sea-ice concentrations are prescribed in the Arctic Ocean. It has been found that the amplitude of surface warming over the melted sea-ice region is controlled by concurrent in situ SST even if these simulations are forced by the same sea-ice concentration. Much of the sensitivity of surface warming to in situ SST are related with large changes in surface heat fluxes such as the outgoing long-wave flux in early winter (October–December) and the sensible and latent heat fluxes for the entire cold season. Vertical extension of surface warming and moistening is sensitive to these changes as well; the associated condensational heating modulates a static stability in the lower troposphere. This study also indicates that changes in SST fields in AGCM simulations must be implemented with extra care, especially in the melted sea-ice region in the Arctic. The statistical method introduced in this study for adjusting SSTs in conjunction with a given sea-ice change can help to model the atmospheric response to sea-ice loss more accurately.  相似文献   

7.
根据1986年1—2月中美海气考察船所获得的气象资料和其它海洋气象报告,本文计算了热带西太平洋海面的热量平衡,指出该区域海面供给大气的热量大于它从大气接受到的能量。是一个重要的热源区。同时指出,海洋向大气输送热量最显著的地区是出现在西太平洋西部的热带地区,即在 10°N、130—150°E附近。此外,在该海域内,确定海面热量平衡特性的两个最重要的因素应属潜热通量和太阳辐射通量。   相似文献   

8.
ABSTRACT

Sea surface temperature (SST) from four Nucleus for European Modelling of the Ocean (NEMO) model simulations is analyzed to study the bulk flux parameterization to compute SST over the Hudson Bay Complex (HBC) for the summer months (August and September) from 2002 to 2009. The NEMO simulation was forced with two atmospheric forcing sets with different resolutions: the Coordinated Ocean-ice Reference Experiment, version 2 (COREv2), as the lower resolution and the Canadian Meteorological Centre’s Global Deterministic Prediction System Reforecasts (CGRF) as the higher resolution. The CGRF forcing is also implemented in the third and fourth runs using different runoff data and different NEMO resolutions (1/12° versus 1/4°). Results show that all four modelled SSTs followed observed SST patterns, with regional differences in SST bias between simulations with different atmospheric forcing. The SST differences are small between simulations forced with the same atmospheric forcing but with different model resolution or runoff. This implies that the model resolution and runoff have a small effect on the simulated SST in the HBC. Moreover, to better capture the effect of near-surface temperature (Tair) on simulated SST, we conducted three analyses using the Haney flux linearization formula. Results from these assessments did not indicate any direct influence on the model-simulated SSTs by Tair. Looking at the heat flux as a signature for SST showed that both averaged spatial distribution and time series of net heat flux produced by the three CGRF forcing simulations were higher than the net heat flux generated by the CORE 2 simulation. This was generally true for all four components of the total heat flux (sensible, latent, shortwave, and longwave) individually as well. Total heat flux in summer is governed by the shortwave heat flux, with values up to 120?W?m?2 in August, and the longwave heat flux is the main contributor to the total heat flux differences. These heat flux differences lead to corresponding colder model SSTs for the CGRF runs and warmer SSTs for the CORE 2 simulations.  相似文献   

9.
This study aims to explore the relative role of oceanic dynamics and surface heat fluxes in the warming of southern Arabian Sea and southwest Indian Ocean during the development of Indian Ocean Dipole (IOD) events by using National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) daily reanalysis data and Global Ocean Data Assimilation System (GODAS) monthly mean ocean reanalysis data from 1982 to 2013, based on regression analysis, Empirical Orthogonal Function (EOF) analysis and combined with a 2? layer dynamic upper-ocean model. The results show that during the initial stage of IOD events, warm downwelling Rossby waves excited by an anomalous anticyclone over the west Indian Peninsula, southwest Indian Ocean and southeast Indian Ocean lead to the warming of the mixed layer by reducing entrainment cooling. An anomalous anticyclone over the west Indian Peninsula weakens the wind over the Arabian Sea and Somali coast, which helps decrease the sea surface heat loss and shallow the surface mixed layer, and also contributes to the sea surface temperature (SST) warming in the southern Arabian Sea by inhibiting entrainment. The weakened winds increase the SST along the Somali coast by inhibiting upwelling and zonal advection. The wind and net sea surface heat flux anomalies are not significant over the southwest Indian Ocean. During the antecedent stage of IOD events, the warming of the southern Arabian Sea is closely connected with the reduction of entrainment cooling caused by the Rossby waves and the weakened wind. With the appearance of an equatorial easterly wind anomaly, the warming of the southwest Indian Ocean is not only driven by weaker entrainment cooling caused by the Rossby waves, but also by the meridional heat transport carried by Ekman flow. The anomalous sea surface heat flux plays a key role to damp the warming of the west pole of the IOD.  相似文献   

10.
This study uses numerical simulations to examine a case of sea fog that was observed from 20 to 22 March2011 on the southern China coast. The observation dataset includes observatory data, cloud-top temperature from MODIS, GPS sonde, and data from the Integrated Observation Platform for Marine Meteorology(IOPMM). The simulations are based on the Weather Research and Forecasting(WRF) model with four distinct parameter settings.Both the observations and simulations focus on the characteristics of the fog extent, boundary layer structure, and meteorological elements near the air-sea interface. Our main results are as follows:(1) The extent of mesoscale sea fog can be well simulated when the sea surface temperature has at least 0.5 ×0.5 horizontal resolution.(2) To accurately model the vertical structure of the sea fog, particularly the surface-based inversion, vertical levels must be added in the boundary layer.(3) When these model conditions are met, the simulations faithfully reproduce the measured downward shortwave radiation, downward longwave radiation, and surface sensible heat flux during the sea fog period.  相似文献   

11.
The authors examine the Indian Ocean sea surface temperature(SST) biases simulated by a Flexible Regional Ocean Atmosphere Land System(FROALS) model.The regional coupled model exhibits pronounced cold SST biases in a large portion of the Indian Ocean warm pool.Negative biases in the net surface heat fluxes are evident in the model,leading to the cold biases of the SST.Further analysis indicates that the negative biases in the net surface heat fluxes are mainly contributed by the biases of sensible heat and latent heat flux.Near-surface meteorological variables that could contribute to the SST biases are also examined.It is found that the biases of sensible heat and latent heat flux are caused by the colder and dryer near-surface air in the model.  相似文献   

12.
基于中国科学院大气物理研究所大气科学与地球流体力学数值模拟国家重点实验室(LASG/IAP)开发的耦合气候系统模式FGOALS_s1.0控制试验的积分结果,分析了冬季北太平洋海表面湍流热通量(潜热和感热通量之和)异常及其对海表面温度(SST)异常的影响,并通过分析海温倾向方程,比较了各因子对SST变率的相对贡献.结果表...  相似文献   

13.
臭氧和海温对夏季大气的影响机制   总被引:2,自引:0,他引:2  
用球圈范围的P-σ坐标模式对O3和海温的影响进行了数值试验,第一种方案不包含O3,第二种包含了O3,第三种既包含了O3又引入了海洋混合层。结果表明,O3对大气的直接作用表现为高层大气的加热率增大,改变了100hPa的气象场。间接作用则表现为O3引入促发了积云对流加热的变化,从而影响中、低层大气的加热率。海洋混合层的影响是直接的,主要通过海面感热和蒸发量的变化影响低层大气。  相似文献   

14.
赤道西太平洋-印度洋海温异常对亚洲夏季风的影响   总被引:8,自引:0,他引:8  
本文采用了p-σ五层原始方程模式模拟并研究了赤道西太平洋-印度洋海温距平场对亚洲夏季风的影响,计算了四种不同的海温距平试验方案。试验结果表明赤道西太平洋海温正距平使对流层下层的印度低压明显加强,副高北挺,季风槽加深,同时加强了对流层上层的反气旋环流。赤道西印度洋暖海温的模拟结果与赤道西太平洋暖海温对上述系统的影响相反,而赤道西印度洋冷海温对季风环流的影响与赤道西太平洋暧海温的影响一致。试验进一步表明赤道西太平洋-印度洋海温距平的纬向梯度方向对亚洲夏季风的影响是主要的,这一结论与实际观测结果一致。本文进一步讨论了赤道海温距平对越赤道气流、印度洋赤道东-西纬向环流和非绝热加热场的影响,结果都表明赤道西太平洋海温正距平和赤道西印度洋海温负距平的模拟特征与反El Nino年亚洲夏季环流特征类似,而赤道西印度洋海员正距平的模拟特征与El Nino年亚洲夏季坏流特征类似。  相似文献   

15.
The characteristics and possible physical mechanism of interdecadal variation of the intensity of the South Asian High (SAH) in summer are analyzed using the NCEP/NCAR reanalysis data and NOAA extended reconstructed sea surface temperature (SST) data. The results indicate that a remarkable interdecadal transition occurred in the late 1970s that increased the intensity of SAH, or, an abrupt climate change was around 1978. A comparative analysis between the weak and strong period of the SAH intensity shows that the related anomalous patterns of the atmospheric circulation (including wind field, air temperature field and vertical velocity field) are nearly opposite to each other. The surface latent heat flux anomalies over the plateau (especially in the northwest of the plateau) in summer exert great influence on the interdecadal variation of the SAH intensity and the surface sensible heat flux anomalies play a more important role. Consistent with the interdecadal variation of the SAH intensity, the monopole mode of the tropical Indian Ocean SST in summer also experienced a low to high transition in the late 1970s. To some extent, this can reveal the impact of the anomalous monopole mode of the tropical Indian Ocean SST in summer on interdecadal variation of the SAH.  相似文献   

16.
南海夏季风爆发前后海-气界面热交换特征   总被引:20,自引:1,他引:20  
文中利用 2 0 0 0与 2 0 0 2年二次南海海 气通量观测资料和同期西沙站资料 ,研究了南海夏季风爆发前后海洋表面热收支变化特征。研究表明 :南海夏季风爆发前后 ,影响海面热收支变化的主要分量是净短波辐射通量和潜热通量 ,在季风爆发前后不同阶段 ,二个分量的变化有不同表现形式 ,但不论二者如何变化 ,季风爆发与活跃期 ,海面热收入减小或为净支出 ;季风爆发前及中断期间 ,海面热收入逐渐增加 ;由于大的热惯性 ,海温变化落后于海面热收支的变化 ,海温的这种滞后效应通过影响潜热通量调节海面热收支的变化 ,又反过来影响自身的变化 ,形成短期振荡过程 ,这种振荡过程与季风的活跃、中断过程相对应。  相似文献   

17.
The analysis of 3-hourly time-series data on surface meteorological parameters collected at 20° N, 89° E in the head of the Bay of Bengal during the southwest monsoon period (18 August–19 September) of 1990 under the MONTBLEX-90 programme reveals considerable temporal variability in sea-level pressure, sea-surface temperature (SST) and the fluxes of heat and momentum at the air-sea interface. This variability is related closely to the north-south movement of the monsoon trough and the formation and development of synoptic weather systems during this period. A rapid increase in wind speed, cloudiness, instability, momentum flux, sensible heat flux and moisture flux (by 80 Wm-2), and a decrease of SST (by 0.3 °C) and net surface heat flux by 80 Wm-2, was associated with the development of a depression when the monsoon trough moved southwards. At the peak of the depression, values of the latent heat flux and evaporation reached up to 270 Wm-2 and 1.0 cm day-1 respectively. During the depression period the heat loss across the air-sea interface matched well with the heat loss in the upper (100 m) ocean. With the northward movement of the monsoon trough, the momentum and surface heat fluxes decreased rapidly while the sea surface gained heat energy at rates up to 195 Wm-2.  相似文献   

18.
TOGA-COAREIOP海表通量估算   总被引:3,自引:0,他引:3  
姚华栋  李骥  丁一汇 《气象学报》1996,54(6):693-708
使用TOGA-COAREIOP1992年11月5日至1993年2月19日向阳红5号海上船舶(2°S,156°E)观测资料,通过3种不同的总体方法估算了这个点的海表面通量。首先得出一个中性拖曳系数和风速之间的准线性关系,然后用迭代法处理依赖于稳定度的拖曳系数和输送系数,在此基础上计算了动量、感热和潜热通量。在暖池区与西风相对应的通量远大于东信风相对应的通量,海表通量的量值也依赖于稳定度,特别是在弱风条件下。估算的海表净热量平衡表明从海洋向大气大量的热输送主要是由潜热通量和有效长波辐射产生的。其中潜热通量的数值最大、感热通量数值最小。最后和同期日本R/VHakuho考察船(0°,156°E)用涡动相关法得到的直接测量通量比较,作了精确度分析,表明用总体方法估算的通量是可靠的。并用向阳红5号船的资料估算的有效长波辐射和直接测量值作了比较,也和热带西太平洋TOGA调查作了比较分析。  相似文献   

19.
Impacts of regional sea surface temperature(SST)anomalies on the interdecadal variation of the cross-equatorial flows(CEFs)in Eastern Hemisphere are studied using numerical simulations with a global atmospheric circulation model(NCAR CAM3)driven with 1950-2000 monthly SSTs in different marine areas(the globe,extratropics,tropics,tropical Indian Ocean-Pacific,and tropical Pacific)and ERA-40reanalysis data.Results show that all simulations,except the one driven with extratropical SSTs,can simulate the interdecadal strengthening of CEFs around Somali,120oE,and 150oE that occurred in the midand late-1970s.Among those simulated CEFs,the interdecadal variability in Somali and its interdecadal relationship with the East Asian summer monsoon are in better agreement with the observations,suggesting that changes in the SSTs of tropical oceans,especially the tropical Pacific,play a crucial role in the interdecadal variability of CEFs in Somali.The interdecadal change of CEFs in Somali is highly associated with the interdecadal variation of tropical Pacific SST.As the interdecadal warmer(colder)SST happens in the tropical Pacific,a"sandwich"pattern of SST anomalies,i.e."+,-,+"("-,+,-"),will occur in the eastern tropical Pacific from north to south with a pair of anomalous anticyclone(cyclone)at the lower troposphere;the pair links to another pair of anomalous cyclone(anticyclone)in the tropical Indian Ocean through an atmospheric bridge,and thus strengthens(weakens)the CEFs in Somali.  相似文献   

20.
The Kuroshio Extension region is characterized by energetic oceanic mesoscale and frontal variability that alters the air–sea fluxes that can influence large-scale climate variability in the North Pacific. We investigate this mesoscale air-sea coupling using a regional eddy-resolving coupled ocean–atmosphere (OA) model that downscales the observed large-scale climate variability from 2001 to 2007. The model simulates many aspects of the observed seasonal cycle of OA coupling strength for both momentum and turbulent heat fluxes. We introduce a new modeling approach to study the scale-dependence of two well-known mechanisms for the surface wind response to mesoscale sea surface temperatures (SSTs), namely, the ‘vertical mixing mechanism’ (VMM) and the ‘pressure adjustment mechanism’ (PAM). We compare the fully coupled model to the same model with an online, 2-D spatial smoother applied to remove the mesoscale SST field felt by the atmosphere. Both VMM and PAM are found to be active during the strong wintertime peak seen in the coupling strength in both the model and observations. For VMM, large-scale SST gradients surprisingly generate coupling between downwind SST gradient and wind stress divergence that is often stronger than the coupling on the mesoscale, indicating their joint importance in OA interaction in this region. In contrast, VMM coupling between crosswind SST gradient and wind stress curl occurs only on the mesoscale, and not over large-scale SST gradients, indicating the essential role of the ocean mesocale. For PAM, the model results indicate that coupling between the Laplacian of sea level pressure and surface wind convergence occurs for both mesoscale and large-scale processes, but inclusion of the mesoscale roughly doubles the coupling strength. Coupling between latent heat flux and SST is found to be significant throughout the entire seasonal cycle in both fully coupled mode and large-scale coupled mode, with peak coupling during winter months. The atmospheric response to the oceanic mesoscale SST is also studied by comparing the fully coupled run to an uncoupled atmospheric model forced with smoothed SST prescribed from the coupled run. Precipitation anomalies are found to be forced by surface wind convergence patterns that are driven by mesoscale SST gradients, indicating the importance of the ocean forcing the atmosphere at this scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号