首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 362 毫秒
1.
基于NCEP、SODA等再分析资料,采用合成分析和2.5层简化海洋模型数值模拟等方法,分析了El Ni?o和正印度洋偶极子(IOD)事件不同配置情形下印度洋海温异常的演变特征,并重点探讨了联合IOD和独立IOD事件中,关键海区海温异常的发展演变及其可能机制。对于联合IOD事件,初期马里沿岸的增暖可能对其发生起主要的激发作用;而对于独立IOD事件的发生,则可能是赤道东南印度洋的降温起主导作用。不同类型IOD事件中,热带印度洋海表温度异常(SSTA)和海面高度异常(SSHA)的演变特征有明显差别,孟加拉湾上空降水异常所起的作用也不一样,印度洋不同海区混合层温度异常的演变机制也有显著不同。基于2.5层简化海洋模式结果的分析表明,各个海区的热力、动力过程在不同IOD事件有着不同的作用。例如在索马里沿岸海区:对于联合IOD事件,西印度洋赤道东风异常和索马里沿岸东北风异常,有利于该海区出现纬向平流热输送和海表热通量正异常,从而增暖。而对于独立IOD事件,阿拉伯海上空的强西南风异常,加强了索马里沿岸底层冷水的上翻和海表的热通量损失,导致前期纬向平流和夹卷混合的负异常以及后期海表热通量的负异常,使得该海区变冷。   相似文献   

2.
利用多种大气和海洋再分析资料,采用合成分析及2.5层简化海洋模型数值模拟等方法,研究了1951—2012年期间,与东部和中部型El Ni?o事件相伴随的热带印度洋海温偶极子(Indian Ocean Dipole,IOD)出现时,热带印度洋海温异常增暖及其上空海气耦合特征的物理机制。结果表明:夏秋季节,伴随东部型El Ni?o而发生的IOD事件(EP-IOD)和伴随中部型El Ni?o而发生的IOD事件(CP-IOD)中,热带印度洋海温正异常的强度与空间分布具有很大差异。对于EP-IOD事件,夏季,海温正异常中心最先出现在热带西北印度洋;随后秋季,海温正异常向东南发展并扩大至热带中南印度洋,强度较强。对于CP-IOD事件,夏季和秋季,海温正异常中心都位于热带中南印度洋,呈东西向带状分布,但海温正异常强度较EP-IOD事件中弱。进一步分析表明,在EP-IOD事件中,夏季,热带西北印度洋海区西南季风偏弱,通过影响夹卷混合过程导致热带西北印度洋海温上升;秋季,热带西北印度洋上空的异常偏东风导致垂向夹卷混合的正异常,对热带西北印度洋增暖的维持起到重要作用;热带中南印度洋的增暖主要受赤道东南印度洋西传的暖性Rossby波影响。而在CP-IOD事件中,夏秋两季,热带中南印度洋海区出现显著的西北风异常,其上空风速的负异常是增温的主要原因;同时赤道东南印度洋西传的暖性Rossby波对热带中南印度洋的增暖也起到重要作用。   相似文献   

3.
Summary The interannual variability of sea surface temperature (SST) anomalies in the tropical Indian Ocean is dominated mainly by a basin-scale mode (BM) and partly by an east–west contrast mode (zonal mode, ZM). The BM reflects the basin-scale warming or cooling and is highly correlated with El Nino with 3- to 6-month lags, while the ZM is marginally correlated with El Nino with 9-month lags.During an El Nino, large-scale anomalous subsidence over the maritime continent occurs as a result of an eastward shift in the rising branch of the Walker circulation suppresses convection over the eastern Indian Ocean, allowing more solar radiation over the eastern Indian Ocean. At the same time, the anomalous southeasterly wind over the equatorial Indian Ocean forces the thermocline over the western Indian Ocean to deepen, especially in the southern part. As a result, SST over the whole basin increases. As El Nino decays, the subsidence over the maritime continent ceases and so does the anomalous southeasterly wind. However, the thermocline perturbation does not quickly shoal back to normal because of inertia and it disperses as Rossby waves. These Rossby waves are reflected back as an equatorial Kelvin wave, causing deepening of the thermocline in the eastern Indian Ocean, and preventing SSTs from cooling in that region. Moreover, the weaker wind speed of the monsoon circulation results in less latent heat loss, and thus warms the eastern Indian Ocean. These two processes therefore help to maintain warm SSTs over the eastern Indian Ocean until fall. During the fall, the warm SST over the eastern Indian Ocean and the cold SST over the western Indian Ocean are enhanced by air–sea interaction and the ZM returns. The ZM dissipates through the seasonal reversal of the monsoon atmospheric circulation and the boundary-reflected Kelvin wave. In the same manner, a basin-scale cooling in the tropical Indian Ocean can induce the ZM warming in the west and cooling in the east.  相似文献   

4.
基于1982—2013年逐月NCEP资料及GODAS资料,采用回归分析、合成分析以及2.5层简化海洋模式数值模拟等方法,研究了热带东印度洋的大气和海洋过程对印度洋海温偶极子(IOD,Indian Ocean Dipole)东极(IODE,IOD East pole)海温异常的影响。结果表明,IODE海温异常的演变超前IOD西极(IODW,IOD West pole)海温异常的演变,并对IOD事件的生成和发展起到关键作用。初夏,来自阿拉伯海、中南半岛地区以及孟加拉湾西南部的水汽输送,导致孟加拉湾东部出现强降水。降水释放的潜热在热带东印度形成了一个跨越赤道的经向环流,有利于加强赤道东印度洋的过赤道气流,并在苏门答腊沿岸形成偏南风异常。该异常偏南风通过影响混合层垂向夹卷混合过程和纬向平流过程,导致IODE海温迅速下降。随后赤道东南印度洋异常东南风迅速增强以及赤道中印度洋东风异常的出现,增强了自东南印度洋向西印度洋的水汽输送,削弱了向孟加拉湾的水汽输送,使西南印度洋的降水增强,孟加拉湾东部的降水减弱。因此,IOD达到盛期前孟加拉湾东部的降水通过局地经向环流在苏门答腊沿岸形成偏南风异常,导致苏门答腊沿岸迅速的降温,并最终导致IOD事件的发生。  相似文献   

5.
印度洋对ENSO事件的响应:观测与模拟   总被引:11,自引:3,他引:8  
观测事实显示,在El Ni(n~)o期间,伴随着赤道中东太平洋表层海温(SST)的升高,热带印度洋SST出现正距平.作者利用海气耦合模式模拟了印度洋对ENSO事件的上述响应,并进而讨论了其物理机制.所用模式为法国国家科研中心Pierre-Simon-Laplace 全球环境科学联合实验室(IPSL)发展的全球海气耦合模式.该模式成功地控制了气候漂移,能够合理再现印度洋的基本气候态.观测中与ENSO相关的热带印度洋SST变化,表现为全海盆一致的正距平,并且这种变化要滞后赤道中东太平洋SST变化大约一个季度,意味着它主要是对东太平洋SST强迫的一种遥响应,模式结果也支持这一机制,尽管模式中的南方涛动现象被夸大了,使得模拟的与ENSO相关联的SST正距平的位置南移,阿拉伯海和孟加拉湾被负距平(而不是正距平)所控制.研究表明,东太平洋主要通过大气桥影响潜热释放来影响印度洋SST变化.赤道东太平洋El Ni(n~)o事件的发展,导致印度洋上空风场异常自东而西传播;伴随着风场的变化,潜热发生相应变化,并最终导致SST异常的发生.非洲东海岸受索马里急流控制的海域,其SST的变化不能简单地利用热通量的变化来解释.证据显示,印度洋的增暖是ENSO事件发生的结果而不是其前期信号.  相似文献   

6.
采用1957—2002年850 hPa风场的ERA-40再分析资料,分析得知西北太平洋低层环流存在着明显的年际变化。这种年际变化表征了西北太平洋夏季风的年际变化,并且会影响东亚夏季风的变化。用Hadley海表面气压以及海表温度资料诊断得到,这种夏季西北太平洋反气旋异常(WPAC,northwest Pacific anomalous anticyclone)的年际变化与北印度洋同期海表温度变化存在很好的相关。用偏相关方法消除N ino3.4信号的同期线性影响,这种同期相关更加显著,而西南热带印度洋的同期海温与WPAC的相关并不显著。数值试验结果表明,北印度洋存在正海温异常时,北印度洋降水偏多,同时伴随着西北太平洋反气旋异常。当只有西南热带印度洋有正海温异常时,北印度洋会出现东风异常且降水减少,而西北太平洋有弱的气旋异常。数值模式结果与观测数据的诊断结果相吻合,说明当夏季北印度洋海表温度为正异常时,可能会产生西北太平洋反气旋异常。  相似文献   

7.
The reproducibility and future changes of the onset of the Asian summer monsoon were analyzed based on the simulations and projections under the Representative Concentration Pathways(RCP) scenario in which anthropogenic emissions continue to rise throughout the 21 st century(i.e. RCP8.5) by all realizations from four Chinese models that participated in the Coupled Model Intercomparison Project Phase 5(CMIP5). Delayed onset of the monsoon over the Arabian Sea was evident in all simulations for present-day climate, which was associated with a too weak simulation of the low-level Somali jet in May.A consistent advanced onset of the monsoon was found only over the Arabian Sea in the projections, where the advanced onset of the monsoon was accompanied by an increase of rainfall and an anomalous anticyclone over the northern Indian Ocean. In all the models except FGOALS-g2, the enhanced low-level Somali jet transported more water vapor to the Arabian Sea, whereas in FGOALS-g2 the enhanced rainfall was determined more by the increased wind convergence. Furthermore,and again in all models except FGOALS-g2, the equatorial SST warming, with maximum increase over the eastern Pacific,enhanced convection in the central West Pacific and reduced convection over the eastern Indian Ocean and Maritime Continent region, which drove the anomalous anticyclonic circulation over the western Indian Ocean. In contrast, in FGOALS-g2, there was minimal(near-zero) warming of projected SST in the central equatorial Pacific, with decreased convection in the central West Pacific and enhanced convection over the Maritime Continent. The broader-scale differences among the models across the Pacific were related to both the differences in the projected SST pattern and in the present-day simulations.  相似文献   

8.
Delayed impact of El Niño on Tropical Indian Ocean (TIO) Sea Surface Temperature (SST) variations and associated physical mechanisms are well documented by several studies. However, TIO SST evolution during the decay phase of La Niña and related processes are not adequately addressed before. Strong cooling associated with La Niña decay over the TIO could influence climate over the Indian Oceanic rim including Indian summer monsoon circulation and remotely northwest Pacific circulation. Thus understanding the TIO basin-wide cooling and related physical mechanisms during decaying La Niña years is important. Composite analyses revealed that negative SST anomalies allied to La Niña gradually dissipate from its mature phase (winter) till subsequent summer in central and eastern Pacific. In contrast, magnitude of negative SST anomalies in TIO, induced by La Niña, starts increasing from winter and attains their peak values in early summer. It is found that variations in heat flux play an important role in SST cooling over the central and eastern equatorial Indian Ocean, Bay of Bengal and part of Arabian Sea from late winter to early summer during the decay phase of La Niña. Ocean dynamical processes are mainly responsible for the evolution of southern TIO SST cooling. Strong signals of westward propagating upwelling Rossby waves between 10°S to 20°S are noted throughout (the decaying phase of La Niña) spring and summer. Anomalous cyclonic wind stress curl to the south of the equator is responsible for triggering upwelling Rossby waves over the southeastern TIO. Further, upwelling Rossby waves are also apparent in the Arabian Sea from spring to summer and partly contributing to the SST cooling. Heat budget analysis reveals that negative SST/MLT (mixed layer temperature) anomalies over the Arabian Sea are mostly controlled by heat flux from winter to spring and vertical advection plays an important role during early summer. Vertical and horizontal advection terms primarily contribute to the SST cooling anomalies over southern TIO and the Bay of Bengal cooling is primarily dominated by heat flux. Further we have discussed influence of TIO cooling on local rainfall variations.  相似文献   

9.
柳伊  范磊 《山东气象》2019,39(3):36-42
通过资料分析与数值模拟研究了西北太平洋低空环流特征及其与海面温度(SST)异常关系的季节性差异,得到如下结论:1)西北太平洋低空环流的空间尺度和位置在春季和夏季存在明显差异,从春季到夏季,异常环流范围缩小且中心位置向西北偏移;2)西北太平洋低空环流与西北太平洋局地海温的相互作用存在季节差异,春季西北太平洋冷海温与上空反气旋异常之间存在相互作用,而夏季则以大气影响海洋为主,异常的反气旋/气旋可以加热/冷却其下垫面的海温,大气超前3~4 d影响海洋;3)夏季异常反气旋环流(WNPAC)的维持主要来自非局地海温异常(北印度洋暖海温与中太平洋冷海温异常)的强迫,这两个海区对WNPAC的影响也存在季节性差异,北印度洋的影响主要体现在晚春至盛夏,而中太平洋则主要在晚夏发挥作用。  相似文献   

10.
利用NCEP/NCAR再分析环流资料、CMAP降水量和NOAA海温资料研究了热带印度洋夏季水汽输送的时空变化特征,并考察其对南亚季风区夏季降水的影响.热带印度洋夏季异常水汽输送第一模态表现为异常水汽从南海向西到达孟加拉湾后分成两支,其中一支继续往西到达印度次大陆和阿拉伯海,对应印度半岛南端和中南半岛的西风水汽输送减弱,导致这些区域降水减少;第二模态表现为异常水汽从赤道东印度洋沿赤道西印度洋、阿拉伯海、印度半岛、中南半岛的反气旋输送,印度和孟加拉湾南部为反气旋异常水汽输送,水汽辐散、降水减少,而印度东北部为气旋性水汽输送,水汽辐合、降水增多.就水汽输送与局地海温的关系而言,水汽输送第一模态与热带印度洋海温整体增暖关系密切,而第二模态与同期印度洋偶极子关系密切.  相似文献   

11.
Bases on the NCEP / NCAR reanalysis products, HadISST dataset, and data of tropical cyclone (TC)landfalling in the Chinese mainland during 1960-2019, the possible impacts of Indian Ocean Dipole (IOD) mode andIndian Ocean basin (IOB) mode on the last-TC-landfall date (LLD) and first-TC-landfall date (FLD), respectively, areinvestigated in this study. The LLD is in significantly negative correlation with autumn IOD on the interannual time-scale and their association is independent of El Ni?o-Southern Oscillation (ENSO). The LLD tends to be earlier when theIOD is positive while becomes later when the IOD is negative. An anomalous lower-level anticyclone is located aroundthe Philippines during October-November, resulting from the change of Walker circulation over the tropical Indo-westPacific Ocean forced by sea surface temperature (SST) anomalies related to a positive IOD event. The Philippinesanticyclone anomaly suppresses TCs formation there and prevents TCs from landfalling in the Chinese mainland due tothe anomalous westerly steering flows over southeast China during October-November, agreeing well with the earlierLLD. However, the robust connection between spring IOB and FLD depends on ENSO episodes in preceding winter.There is an anticyclonic anomaly around the Philippines caused by the tropical SST anomalies through modulating theWalker circulation during May-June when the IOB is warming in the El Ni?o decaying phase. Correspondingly, the TCsgenesis is less frequent near the Philippines and the mid-level steering flows associated with the expanded westernPacific subtropical high are disadvantageous for TCs moving towards southeast China and making landfall during May-June, in accordance with the later FLD. By contrast, cooling IOB condition in spring of a La Ni?a decaying year andnegative IOD cases during autumn could produce a completely reversed atmospheric circulation response, leading to anearlier FLD and a later LLD over the Chinese mainland, respectively.  相似文献   

12.
1976/1977年前后热带印度洋海表温度年际异常的变化   总被引:1,自引:0,他引:1  
基于1948~2005年NCEP/NCAR(美国大气研究中心/环境预测中心)再分析资料,讨论了1976/1977年前后的年代际气候变化对热带印度洋海表温度(SST)年际变率特征的影响,结果表明:在气候变化前后,ENSO都能导致热带印度洋SSTA(海表面温度异常)出现全海盆同号的变化,这种模态在冬季最强;气候变化前与变化后相比,该模态对该地区海温年际变率的方差贡献大22.1%, 达到最强的时间早2个月。气候变化前,秋季热带印度洋SSTA的主导年际变率模态表现为全海盆同号,变化后则表现为“偶极子模态”(IODM)。导致上述SSTA特征变化的重要原因,是气候变化前后印度洋风场对ENSO的响应不同。在气候变化前,与ENSO相关联的热带印度洋东风异常首先在夏季出现,而变化后则首先在春季出现,并且有一反气旋性环流异常维持在热带东南印度洋。  相似文献   

13.
Evolution of Indian Ocean Dipole (IOD) events in 2003, 2006 and 2007 is investigated using observational and re-analysis data products. Efforts are made to understand various processes involved in three phases of IOD events; activation, maturation and termination. Three different triggers are found to activate the IOD events. In preceding months leading to the IOD evolution, the thermocline in southeastern Indian Ocean shoals by reflection of near equatorial upwelling Rossby waves at the East African coast into anomalous upwelling equatorial Kelvin waves. Strengthening (weakening) of northern (southern) portion of ITCZ in March/April and May/June of IOD years, leads to strengthening of alongshore winds along Sumatra/Java coasts. With the combined shallow thermocline and increased latent heat flux due to enhanced wind speeds, the SST in the southeastern Indian Ocean cools in following months. On intraseasonal time scales convection-suppressing phase of Madden-Julian oscillation (MJO) propagates from west to east in May/June of IOD year, and easterlies associated with this phase of MJO causes further shoaling of thermocline in southeastern Indian Ocean, through anomalous upwelling Kelvin wave. All these three mechanisms appear to be involved in initiating IOD event in 2006. On the other hand, except the strengthening/weakening of ITCZ, all other mechanisms are involved in activation of 2003 IOD event. Activation of 2007 IOD event was due to propagation of convection-suppressing MJO in May/June and strengthening of mean winds along Sumatra/Java coast from March to June through changes in convection. The IOD events matured into full-fledged events in the following months after activation, by surface heat fluxes, vertical and horizontal advection of cool waters supported by local along-shore upwelling favorable winds and remote equatorial easterly wind anomalies through excitation of upwelling Kelvin waves. Propagating MJO signals in the tropical Indian Ocean brings significant changes in evolution of IOD events on MJO time scales. Termination of 2003 and 2007 IOD events is achieved by strong convection-enhancing MJOs propagating from west to east in the tropical Indian Ocean which deepen the thermocline in the southeastern equatorial Indian Ocean. IOD event in 2006 was terminated by seasonal reversal of monsoon winds along Sumatra/Java coasts which stops the local coastal upwelling.  相似文献   

14.
Summary The atmospheric and oceanic conditions associated with the southwest monsoon during the contrasting monsoon years of 2002 and 2003 over the Arabian Sea have been analyzed in the present study. Early onset of southwesterlies and reduced net heat gain due to low solar radiation were responsible for low sea-surface temperatures (SSTs) over the Arabian Sea during 2002 pre-monsoon (particularly in May). Conversely, light winds and an increased net heat gain set up the pre-monsoon warming in 2003. The development and intensification of deep convection over a large area of the Arabian Sea prior to the onset of the monsoon was observed during 2003, but was absent in 2002. Weak cross equatorial flow and a weak low level jet over the Arabian Sea reduced moisture transport towards the Indian subcontinent in July 2002. This scenario helped to contribute to a prolonged break in monsoon conditions during July. However, no such break in conditions occurred during July 2003. In 2002, the summer monsoon cooling of the Arabian Sea occurred well before July, whereas in 2003 cooling occurred during July. Estimates of wind driven Ekman (horizontal) and vertical transports showed maximum values in the month of June (July) in 2002 (2003). These estimates clearly show the importance of horizontal and vertical advection in the summer cooling of the Arabian Sea. During the southwest monsoon period, the Arabian Sea was warmer in 2003 than in 2002. Late onset of the southwesterlies in June, late cooling of the Arabian Sea in July, and downwelling Rossby wave propagation were responsible for the warm SSTs in 2003. Weak wind stress curl in July dampened the westward propagating sea surface height anomaly signals (Rossby waves) before they reached the western Arabian Sea in 2002, whereas, in 2003 strong wind stress curl enhanced Rossby wave propagation. During the summer monsoon period, subsurface temperatures in the south central Arabian Sea were warmer in 2003 than in 2002, particularly in July and August. Strong Ekman convergence, solar penetration, and downwelling (downward velocities) are responsible for the enhanced subsurface warming in 2003.  相似文献   

15.
利用1979~2015年NCEP/NCAR发布的月平均全球再分析资料,分析了热带印度洋-西太平洋水汽输送异常对中国东部夏季降水的影响及其形成机理。研究结果表明:热带印度洋-西太平洋地区(10°S~30°N,60°~140°E)夏季异常水汽输送主要包括两个模态,他们可以解释总的水汽输送异常34%的方差。其中,第一模态(EOF1)表现为异常水汽沿反气旋从热带西太平洋经过南海及孟加拉湾输送到中国东部上空,对应南海、孟加拉湾水汽路径输送均偏多,此时西太平洋副热带高压显著偏强,异常水汽在长江中下游地区辐合并伴随显著上升运动,有利于长江中下游降水偏多;第二模态(EOF2)表现为异常水汽从热带印度洋沿阿拉伯海、印度半岛、中南半岛等呈反气旋式输送,华南上空相应出现气旋式水汽输送异常,并对应异常水汽辐合和上升运动,有利于华南降水偏多。就可能的外部成因而言,EOF1与ENSO关系密切,表现为前冬热带中东太平洋显著偏暖,夏季同期热带北印度洋、南海上空显著偏暖,造成西太平洋副热带高压显著偏强,异常水汽主要来源于热带西太平洋和南海;EOF2与同期热带印度洋偶极子(TIOD)异常有关,TIOD为正位相时热带印度洋上空出现异常东风,华南上空出现异常气旋并伴随水汽异常辐合,异常水汽主要来源于热带南印度洋。  相似文献   

16.
采用NCEP再分析资料,揭示了南海-西太平洋春季对流存在显著的10~30天振荡周期。在年际尺度上,南海-西太平洋春季对流10~30天振荡强度(简称SCSWP_SISO)与南海夏季风爆发日期存在显著的负相关关系。当春季菲律宾和西太平洋海温偏高、赤道太平洋中部及以东地区海温偏低时,索马里、110 °E越赤道气流会加强,南海-西太平洋偏西风加强,产生异常气旋性环流,垂直上升运动增强,水汽异常偏多,东西风切变增强,有利于SCSWP_SISO增强。而SCSWP_SISO增强时,有由南往北、自西向东的异常气旋传播,从而减弱低层副热带高压使之较早撤出南海,南海夏季风得以较早爆发。反之亦然。在不同的年代际背景下,SCSWP_SISO经历了偏弱、较弱和偏强的变化,但影响其变化的因子并不完全一致。在第一阶段(1958—1976年),主导因子是南海-西太平洋冷的海温与异常下沉运动、异常减弱的水汽-对流条件。在第二阶段(1977—1993年),主导因子为中东太平洋异常偏冷的海温以及局地异常减弱的风场垂直切变。在第三阶段(1994—2011年),主导因子为热带海温的整体偏暖、风场垂直切变的增强以及水汽-对流的加强。但随着SCSWP_SISO的年代际增强,其与南海夏季风爆发日期的相关关系却呈现下降趋势。   相似文献   

17.
基于1979~2019年日本气象厅提供的地表感热与大气环流再分析资料,美国国家海洋和大气管理局提供的月均海表温度数据和国家气象信息中心提供的月降水数据,分析了夏季伊朗高原感热和热带印度洋海温与同期塔里木盆地降水的可能联系。奇异值分解分析表明,两个地区热力异常均与塔里木盆地夏季降水联系紧密,可以通过影响500 hPa风场和水汽输送来调制塔里木盆地夏季降水的变化。当伊朗高原感热和热带印度洋海温均偏强(弱)时,对应中亚上空受异常气旋(反气旋)控制,蒙古高原上空为反气旋(气旋)控制,二者共同作用塔里木盆地上空盛行异常偏南(北)风,形成有利(不利)的动力条件;同时印度半岛上空受异常反气旋(气旋)环流控制,中亚上空为异常气旋(反气旋),阿拉伯海水汽可(不可)由以上两个系统两步输送至新疆上空,导致盆地夏季降水整体偏多(少)。当伊朗高原和热带印度洋热力异常反相变化时,盆地降水空间差异性较大,部分区域降水偏多,部分地区降水偏少。  相似文献   

18.
Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.  相似文献   

19.
利用1979—2017年TropFlux海气热通量资料、ERA5再分析资料及HadISST资料,分析了冬季北大西洋涛动(North Atlantic Oscillation,NAO)与同期热带印度洋海气热通量的关系。结果表明,NAO指数与热带印度洋海气净热通量整体上呈负相关,意味着NAO为正位相时,海洋向大气输送热量,其显著区域主要位于热带西印度洋(50°~70°E,10°S~10°N)。净热通量的变化主要依赖于潜热通量和短波辐射的变化;潜热通量和短波辐射在NAO正(负)位相事件期间的贡献率分别为72.96%和61.48%(71.72%和57.06%)。NAO可通过Rossby波列影响印度洋地区局地大气环流,进而影响海气热通量;当NAO为正位相时,波列沿中低纬路径传播至印度洋地区,在阿拉伯海北部对流层高层触发异常反气旋环流。该异常反气旋性环流加强了阿拉伯高压,使得北印度洋偏北风及越赤道气流加强。伴随风速的加强,海面蒸发增强,同时加强的越赤道气流导致热带辐合带强度偏强,深对流加强引起对流层水汽和云量增多,进而引起海表下行短波辐射减少。  相似文献   

20.
After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible mechanisms between Indian Ocean Dipole(IOD) and two types of El Nio were investigated.IOD events,originating from Indo-Pacific scale air-sea interaction,are composed of two modes,which are associated with EP and CP El Ni o respectively.The IOD mode related to EP El Nio events(named as IOD1) is strongest at the depth of 50 to 150 m along the equatorial Indian Ocean.Besides,it shows a quasi-symmetric distribution,stronger in the south of the Equator.The IOD mode associated with CP El Nio(named as IOD2) has strongest signal in tropical southern Indian Ocean surface.In terms of mechanisms,before EP El Nio peaks,anomalous Walker circulation produces strong anomalous easterlies in equatorial Indian Ocean,resulting in upwelling in the east,decreasing sea temperature there;a couple of anomalous anticyclones(stronger in the south) form off the Equator where warm water accumulates,and thus the IOD1 occurs.When CP El Nio develops,anomalous Walker circulation is weaker and shifts its center to the west,therefore anomalous easterlies in equatorial Indian Ocean is less strong.Besides,the anticyclone south of Sumatra strengthens,and the southerlies east of it bring cold water from higher latitudes and northerlies west of it bring warm water from lower latitudes to the 15° to 25°S zone.Meanwhile,there exists strong divergence in the east and convergence in the west part of tropical southern Indian Ocean,making sea temperature fall and rise separately.Therefore,IOD2 lies farther south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号