首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 860 毫秒
1.
By comparison of simulated cumulus convection processes in RegCM2,using the Kuo scheme,the Grell scheme and the mass flux scheme (MFS),it is found that the MFS can simulate thecumulus heating and moistening very well.A series of sensitivity tests show that the parametersfor specifying the conversion coefficient from cloud droplets to raindrops,the turbulententrainment and detrainment rates in updrafts anddowndrafts,and the intensity of thedowndraftshave different degrees of influence upon the cumulus convection.Therefore.it is quite importantfor cumulus parameterization scheme to define these parameters as accurately as possible.  相似文献   

2.
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.  相似文献   

3.
The Land-surface Process Model(LPM-ZD)has been successfully coupled with the regionalclimate model RegCM2 of NCAR.Then thus-obtained coupled model(CRegCM)has been appliedto simulate the climate characteristics of heavy rain in middle and East China for three months fromMay to July 1991.and compared with model output of NCAR-RegCM2 using BATS as land-surface process scheme,abbreviated as NRegCM.The results show that CRegCM has good abilityand performance.CRegCM successfully simulates the extreme precipitation event and thesimulations of CRegCM for surface temperature and some physical variables related to land surfaceprocess are more reasonable than those of NRegCM.  相似文献   

4.
According to the characteristics of organized cumulus convective precipitation in China, a cumulus parameterization scheme suitable for describing the organized convective precipitation in East Asia is presented and modified. The Kain–Fristch scheme is chosen as the scheme to be modified based on analyses and comparisons of simulated precipitation in East Asia by several commonly-used mesoscale parameterization schemes. A key dynamic parameter to dynamically control the cumulus parameterization is then proposed to improve the Kain–Fristch scheme. Numerical simulations of a typhoon case and a Mei-yu front rainfall case are carried out with the improved scheme, and the results show that the improved version performs better than the original in simulating the track and intensity of the typhoons, as well as the distribution of Mei-yu front precipitation.  相似文献   

5.
Based on the existing land-surface schemes and models,an improved Land-surface ProcessModel(LPM-ZD)has been developed.It has the following major characteristics:(1)Thecombination of physical equations and empirical analytical formulae are used to construct thegoverning equations of soil temperature and moisture.Higher resolution of model level andphysical equations are adopted for the upper soil layers,and for the lower soil layers,lowerresolution of model level is adopted and empirical analytical formulae are used.(2)In land surfacehydrological process,the sub-grid distribution of rainfall and its effects are taken into account.(3)A simple snow cover submodel has been used,which includes effects of snow cover on soilthermodynamics and hydrology,as well as albedo.By use of this model and three groups of point observation data,a series of“off-line”testshave been carried out.The simulation results indicate that land-surface process model has goodperformance and can well simulate diurnal and seasonal variation of land surface processes for manykinds of land surface covers(forest,grass,crops and desert)in different climate zone.The resultssimulated by the model are consistent with the observations.Later,by use of one group ofobservation data and the model,a series of sensitivity experiments have been done.It is shownthat the model is much sensitive to some parameters,such as initial soil moisture,vegetationphysical parameters as well as the proportion of the grid covered with rain.Therefore it is muchimportant for land-surface process model to define these parameters as accurately as possible.  相似文献   

6.
Based on the two-dimensional slab-symmetric model of cumulus clouds established by the authors,thedevelopment of the cumulus cloud and its precipitation in environments with and without the stratiform cloudpresent has been simulated numerically in almost the same atmospheric stratification.Results show that thepresence of the stratiform cloud has a significant effect on the development of the cumulus cloud and theincreae of its precipitation.The rainfall may increase by scveral to tens of times.It is believed that theconvective-stratiform mixed cloud system may be important for producing heavy to torrential rain.This isin good agreement with what has been observed in the Meiyu frontal cloud system in recent investigations  相似文献   

7.
A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a “bulk” cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present,this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme,although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved.The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation eoetfieient between the simulation and the observations confirms the improved results.  相似文献   

8.
In this paper, a 5-level spectral AGCM is used to examine the sensitivity of simulated East Asian summer mon-soon circulation and rainfall to cumulus parameterization schemes. From the simulated results of East Asian mon-soon circulations and rainfalls during the summers of 1987 and 1995, it is shown that the Kuo’s convective parameterization scheme is more suitable for the numerical simulation of East Asian summer monsoon rainfall and circulation. This may be due to that the cumulus in the rainfall system is not strong in the East Asian monsoon region.  相似文献   

9.
PENN STATE/NCAR MM5 is used to simulate precipitation of the heavy rain process during 12-13 July 1994.The effects of different PBL parameterizations,resolvable scale moisture schemes and cumulus parameterization on the process rainfall simulation are investigated.By comparing the results of hydrostatic and nor.hydrostatic experiments,the nonhydrostatic impact upon precipitation is also examined.It is found in this study thai PENN STATE/NCAR MM5 has advantage not only in theory but also in simulating results with real data.In MM5.however,the selection of physical processes,especially water-cycle process,is very important and crucial to precipitation forecast of the case.It is concluded that the model with Grell (1993) scheme for convection and condensation method for resolvable scale precipitation captured the rainstorm during 12-13 July 1994 in Beijing area more successfully  相似文献   

10.
A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part I. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model’s systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991–2000) for summer (June–August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM NCC were made. The results are basically reasonable compared with the observations.  相似文献   

11.
In this study, the improved high-resolution regional climate model of the China National Climate Center (RegCM_NCC) is used to examine the sensitivity of the simulated circulation and rainfall during the South China Sea summer monsoon (SCSSM) period during 1998 in an effort to compare to other cumulus param- eterization schemes. The investigation has indicated that the model is capable of simulating the seasonal march of the SCSSM and that the results were very sensitive to the choice of cumulus parameterization schemes. It seems that the Kuo cumulus parameterization scheme simulates the process of the SCSSM onset reasonably well, which can reproduce the onset timing and dramatic changes before and after the onset, especially the upper- and lower-level wind-fields. However, there are still some discrepancies between the simulations and observations. For example, the model can not completely simulate the intensity of the rainfall or the location of the western Pacific subtropical high as well as the feature of the rapid northward propagation of seasonal rain belt.  相似文献   

12.
It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the invalidity of parcel theory. However, evidence shows that the convective Richardson number Ri^* might be an improper characteristic scaling parameter for the entrainment process. An attempt to use an innovative parameter to parameterize the entrainment-zone thickness has been made in this paper.Based on the examination of the data of water-tank experiments and atmospheric measurements, it is found that the total lapse rate of potential temperature across the entrainment zone is proportional to that of the capping inversion layer. Inserting this relationship into the so-called parcel theory, it thus gives a new parameterization scheme for the depth of the entrainment zone. This scheme includes the lapse rate of the capping inversion layer that plays an important role in the entrainment process. Its physical representation is reasonable. The new scheme gives a better ordering of the data measured in both watertank and atmosphere as compared with the traditional method using Ri^*. These indicate that the parcel theory can describe the entrainment process suitably and that the new parameter is better than Ri^*.  相似文献   

13.
The Cloud Processes of a Simulated Moderate Snowfall Event in North China   总被引:1,自引:0,他引:1  
The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20–21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor, in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow.  相似文献   

14.
A 5-level spectral AGCM (ImPKU-5LAGCM) is used to examine the sensitivity of the simulated results of the summer monsoon rainfall and circulation in East Asia to different cumulus parameterization schemes in the climatological-mean case and in the cases of weak and strong Asian summer monsoons,respectively. The results simulated with the Arakawa-Schubert's(hereafter A-S's), Kuo's and Manabe's cumulus parameterization schemes show that these simulated distributions of the summer monsoon rainfall and circulation in East Asia depend strongly on the cumulus parameterization schemes either in the climatological-mean case or in the cases of weak and strong Asian summer monsoons. From the simulated results, it might be shown that the Kuo scheme appears to be more suitable for the simulation of the summer monsoon rainfall and circulation in East Asia than the A-S scheme or the Manabe scheme, although the A-S scheme is somewhat better in the simulations of the tropical rainfall. This might be due to that the Kuo's cumulus parameterization scheme is able to reflect well the characteristics of rainfall cloud system in the East Asian summer monsoon region, where the rainfall system used to be a mixing of cumulus and stratus.  相似文献   

15.
In this study, the accuracy of a Pennsylvania State University-National Center for Atmospheric Research mesoscale model (PSU/NCAR MM5) for predicting heavy summer precipitation over the Korean Peninsula was investigated. A total of 1800 simulations were performed using this model for 30 heavy rainfall events employing four cumulus parameterization schemes (CPS), two grid-scale resolvable precipitation schemes (GRS), and two planetary boundary layer (PBL) schemes in three model resolutions (90 km, 30 km, and 10 km). The heavy rainfall events were mesoscale convective systems developed under the influence of mid-latitude baroclinic systems with low-level moisture transport from the ocean. The predictive accuracy for maximum rainfall was approximately 80% for 10-km resolution and was 60% for 30-km resolution. The predictive accuracy for rainfall position extended to ~150 km from the observed position for both resolutions. Simulated rainfall was most sensitive to CPS, then to PBL schemes, and then to GRS. In general, the Grell (GR) scheme and the Anthes and Kuo (AK) scheme showed a better prediction capability for heavy rainfall than did the Betts-Miller (BM) scheme and the Kain-Fritsch (KF) scheme. The GR scheme also performed well in the 24-h and 12-h precipitation predictions: the parameterized convective rainfall in GR is directly related to synoptic-scale forcing. The models without CPS performed better for rainfall amounts but worse for rainfall position than those with CPS. The MM5 model demonstrated substantial predictive capacity using synoptic-scale initial conditions and lateral boundary data because heavy summer rainfall in Korea occurs in a strong synoptic-scale environment.  相似文献   

16.
Based on the primitive equation model with p-σincorporated coordinate system originally developed by Qian et al., a one-way nested fine mesh limited area model is developed. This model is nested with ECMWF T42 data to simulate the extra-intensive rainfall event occurring in the Changjiang and Huaihe River valleys in summer of 1991. The results show that the model has cer-tain capacity to fairly reproduce the regional distribution and the movement of the main rainfall belts. Therefore it can be used as a regional climate model to simulate and predict the short-range regional climate changes.  相似文献   

17.
The fifth-generation Pennsylvania State University/NCAR Mesoscale Model Version 3 (MM5V3) was used to simulate extreme heavy rainfall events over the Yangtze River Basin in June 1999. The effects of model's horizontal and vertical resolution on the extreme climate events were investigated in detail. In principle, the model was able to characterize the spatial distribution of monthly heavy precipitation. The results indicated that the increase in horizontal resolution could reduce the bias of the modeled heavy rain and reasonably simulate the change of daily precipitation during the study period. A finer vertical resolution led to obviously improve rainfall simulations with smaller biases, and hence, better resolve heavy rainfall events. The increase in both horizontal and vertical resolution could produce better predictions of heavy rainfall events. Not only the rainfall simulation altered in the cases of different horizontal and vertical grid spacing, but also other meteorological fields demonstrated diverse variations in terms of resolution change in the model. An evident improvement in the simulated sea level pressure resulted from the increase of horizontal resolution, but the simulation was insensitive to vertical grid spacing. The increase in vertical resolution could enhance the simulation of surface temperature as well as atmospheric circulation at low levels, while the simulation of circulation at middle and upper levels were found to be much less dependent on changing resolution. In addition, cumulus parameterization schemes showed high sensitivity to horizontal resolution. Different convective schemes exhibited large discrepancies in rainfall simulations with regards to changing resolution. The percentage of convective precipitation in the Grell scheme increased with increasing horizontal resolution. In contrast, the Kain-Fritsch scheme caused a reduced ratio of convective precipitation to total rainfall accumulations corresponding to increasing horizontal resolution.  相似文献   

18.
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds. Accurately obtaining the entrainment rate(λ) is particularly important for its parameterization within the overall cumulus parameterization scheme. In this study, an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculate λ of cumulus clouds in a large-eddy simulation. The results demonstrate that the impro...  相似文献   

19.
A coupled regional air-sea model is developed by using the regional climate model (P-σ RCM)and the regional ocean model (POM),which is used to simulate East Asian monsoon and oceanicelements in East Asian coastal waters.The simulated surface layer oceanic elements are basicallyconsistent with the reality and can reflect the interaction between the monsoon and the surfacelayer currents.The great difference with the reality is “cold drift” of the simulated surfacetemperature.The coupled model has certain ability to simulate the atmosphere geopotential heightfields,precipitation and low-level southwest wind from May to August in 1998.It can display theprocess of summer monsoon onset during the third dekad of May and the evolution features afterthe onset.The differences between the simulation results of the coupled model and that of thesingle P-a RCM are shown mainly in the low-level atmosphere and the model internal regions.  相似文献   

20.
原韦华 《大气科学进展》2013,30(6):1679-1694
Atmospheric Intercomparison Project simulations of the summertime diurnal cycle of precipitation and low-level winds over subtropical China by Intergovernmental Panel on Climate Change Fifth Assessment Report models were evaluated. By analyzing the diurnal variation of convective and stratiform components, results confirmed that major biases in rainfall diurnal cycles over subtropical China are due to convection parameterization and further pointed to the diurnal variation of convective rainfall being closely related to the closure of the convective scheme. All models captured the early-morning peak of total rainfall over the East China Sea, but most models had problems in simulating diurnal rainfall variations over land areas of subtropical China. When total rainfall was divided into stratiform and convective rainfall, all models successfully simulated the diurnal variation of stratiform rainfall with a maximum in the early morning. The models, overestimating noon-time (nocturnal) total rainfall over land, generally simulated too much convective rainfall, which peaked close to noon (midnight), sharing some similarities in the closures of their deep convection schemes. The better performance of the Meteorological Research Institute atmospherer. ocean coupled global climate model version 3 (MRI-CGCM3) is attributed to the well captured ratio of the two kinds of rainfall, but not diurnal variations of the two components. Therefore, a proper ratio of convective and stratiform rainfall to total rainfall is also important to improve simulated diurnal rainfall variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号