首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations
Authors:, YUAN Weihua
Institution:State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Abstract:Atmospheric Intercomparison Project simulations of the summertime diurnal cycle of precipitation and low-level winds over subtropical China by Intergovernmental Panel on Climate Change Fifth Assessment Report models were evaluated. By analyzing the diurnal variation of convective and stratiform components, results confirmed that major biases in rainfall diurnal cycles over subtropical China are due to convection parameterization and further pointed to the diurnal variation of convective rainfall being closely related to the closure of the convective scheme. All models captured the early-morning peak of total rainfall over the East China Sea, but most models had problems in simulating diurnal rainfall variations over land areas of subtropical China. When total rainfall was divided into stratiform and convective rainfall, all models successfully simulated the diurnal variation of stratiform rainfall with a maximum in the early morning. The models, overestimating noon-time (nocturnal) total rainfall over land, generally simulated too much convective rainfall, which peaked close to noon (midnight), sharing some similarities in the closures of their deep convection schemes. The better performance of the Meteorological Research Institute atmosphere-ocean coupled global climate model version 3 (MRI-CGCM3) is attributed to the well captured ratio of the two kinds of rainfall, but not diurnal variations of the two components. Therefore, a proper ratio of convective and stratiform rainfall to total rainfall is also important to improve simulated diurnal rainfall variation.
Keywords:diurnal rainfall variation  convective and stratiform rainfall  IPCC AR5 models
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号