首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Based on the existing cumulus convective parameterization schemes,a mass flux scheme(MFS)for cumulus convective parameterization has been successfully developed by reference to thework of Chen et al.(1996).The MFS is a comprehensive scheme.In MFS,not only theimportance of the large-scale moisture convergence is taken into account,but also it includes thecumulus updrafts and downdrafts,cumulus-induced subsidence in the environmental air.entrainment,detrainment and evaporation.The interaction between the cumulus and theenvironment is described by using a one-dimensional bulk model.At the same time the schemeincludes the penetrative and shallow convections.The MFS has been successfully incorporated into the regional climate model RegCM2developed by NCAR.The new model has been applied to simulate summer monsoon characteristicsand their variations of heavy rainfall process in the Changjiang-Huaihe River Basins for threemonths from May to July 1991.The results show that the new model can successfully simulate thisrainfall prolonged process.By comparising the model outputs of RegCM2.using the Kuo schemeand the MFS.it is found that the MFS is better in simulating the surface temperature,rainfallposition and amount,and rainfall duration.  相似文献   

2.
It is presented that there is a pumping effect at its base in the development process of a cumulus.Inthe strongest stage of cumulus development,the pumping is mainly produced by the buoyance at the base,andmay be taken as the first approximation of the ascending speed at the base.The results of numerical calculations and simulations of four observed radar echoes show that as thefirst approximation,the height of air-mass cumulus may be simulated by Haltiner model in the absence of ob-served ascending speeds at the base,and the Haltiner model can be characterized by the sensitivity of the cumulusdevelopment to the virtual temperature excess over environment at the base.  相似文献   

3.
According to the characteristics of organized cumulus convective precipitation in China, a cumulus parameterization scheme suitable for describing the organized convective precipitation in East Asia is presented and modified. The Kain–Fristch scheme is chosen as the scheme to be modified based on analyses and comparisons of simulated precipitation in East Asia by several commonly-used mesoscale parameterization schemes. A key dynamic parameter to dynamically control the cumulus parameterization is then proposed to improve the Kain–Fristch scheme. Numerical simulations of a typhoon case and a Mei-yu front rainfall case are carried out with the improved scheme, and the results show that the improved version performs better than the original in simulating the track and intensity of the typhoons, as well as the distribution of Mei-yu front precipitation.  相似文献   

4.
A 5-level spectral AGCM (ImPKU-5LAGCM) is used to examine the sensitivity of the simulated results of the summer monsoon rainfall and circulation in East Asia to different cumulus parameterization schemes in the climatological-mean case and in the cases of weak and strong Asian summer monsoons,respectively. The results simulated with the Arakawa-Schubert's(hereafter A-S's), Kuo's and Manabe's cumulus parameterization schemes show that these simulated distributions of the summer monsoon rainfall and circulation in East Asia depend strongly on the cumulus parameterization schemes either in the climatological-mean case or in the cases of weak and strong Asian summer monsoons. From the simulated results, it might be shown that the Kuo scheme appears to be more suitable for the simulation of the summer monsoon rainfall and circulation in East Asia than the A-S scheme or the Manabe scheme, although the A-S scheme is somewhat better in the simulations of the tropical rainfall. This might be due to that the Kuo's cumulus parameterization scheme is able to reflect well the characteristics of rainfall cloud system in the East Asian summer monsoon region, where the rainfall system used to be a mixing of cumulus and stratus.  相似文献   

5.
Based on the two-dimensional slab-symmetric model of cumulus clouds established by the authors,thedevelopment of the cumulus cloud and its precipitation in environments with and without the stratiform cloudpresent has been simulated numerically in almost the same atmospheric stratification.Results show that thepresence of the stratiform cloud has a significant effect on the development of the cumulus cloud and theincreae of its precipitation.The rainfall may increase by scveral to tens of times.It is believed that theconvective-stratiform mixed cloud system may be important for producing heavy to torrential rain.This isin good agreement with what has been observed in the Meiyu frontal cloud system in recent investigations  相似文献   

6.
In this paper, a 5-level spectral AGCM is used to examine the sensitivity of simulated East Asian summer mon-soon circulation and rainfall to cumulus parameterization schemes. From the simulated results of East Asian mon-soon circulations and rainfalls during the summers of 1987 and 1995, it is shown that the Kuo’s convective parameterization scheme is more suitable for the numerical simulation of East Asian summer monsoon rainfall and circulation. This may be due to that the cumulus in the rainfall system is not strong in the East Asian monsoon region.  相似文献   

7.
The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)--SAMIL (Spectral Atmospheric Model of IAP LASG). Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme (MCA) and the Zhang-McFarlane (ZM) scheme. MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme. MJO produced by the ZM scheme is too weak and shows little propagation characteristics. Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation. These two cumulus schemes produced different vertical structures of the heating profile. The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA, which maybe contributes greatly to the failure of simulating a reasonable MJO. Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in. The diabatic heating profile plays an important role in the performance of the GCM. Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere (UH), middle troposphere (MH), and lower troposphere (LH). Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale, while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward. It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels, especially in the middle levels, while westward propagating disturbances  相似文献   

8.
The major features of Meiyu precipitation and associated circulation systems simulated by the grid-point atmospheric model of IAP LASG (GAMIL) with Zhang-McFarlane and Tiedtke cumulus parameterization schemes are examined in this paper. The results show that the model with both schemes can reproduce the heavy precipitation center over the Yangtze-Huai River Basin (YHRB) during the Meiyu period. The horizontal and vertical structures of the circulation systems during the Meiyu period are also well simulated,such as the intensive meridional gradients of moisture and μse (pseudo-equivalent temperature), the strong low-level southwesterly flow in the lower troposphere over East China, the location of the westerly jet stream in the upper troposphere, the strong ascending motion in heavy precipitation zone, and compensation downward motion on the northern and southern sides of the heavy precipitation belt. However, obvious discrepancies occur in the simulated temperature field in the mid-lower troposphere,especially with the Zhang-McFarlane scheme. In addition, the simulated Meiyu period (onset and duration) is found to be associated with the temperature difference in the lower atmosphere over the land and ocean, and with the cumulus parameterization schemes. The land-sea thermal contrast (LSTC) simulated by the Zhang-McFarlane scheme increases faster than that in the reanalysis from April to July, and changes from negative to positive at the end of May. Consequently, the simulated Meiyu onset begins in May, one month earlier than the observation. On the other hand, since the LSTC simulated by the Tiedtke scheme is in agreement with the reanalysis during June and July, the simulated Meiyu period is similar to the observation. The different LSTCs simulated by the GAMIL model with the two cumulus parameterization schemes may affect the Meiyu period simulations. Therefore, it is necessary to refine the cumulus parameterization scheme in order to improve the Meiyu precipitation simulation by the GAMIL model.  相似文献   

9.
A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a “bulk” cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present,this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme,although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved.The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation eoetfieient between the simulation and the observations confirms the improved results.  相似文献   

10.
This study is essentially an experiment on the control experiment in the August 1975 catastrophe which was the heaviest rainfall in mainland China with a maximum 24-h rainfall of 1060.3 mm, and it significantly demonstrates that the limited area model can still skillfully give reasonable results even only the conventional data are available. For such a heavy rainfall event, a grid length of 90 km is too large while 45 km seems acceptable. Under these two grid sizes, the cumulus parameterization scheme is evidently superior to the explicit scheme since it restricts instabilities such as CISK to limited extent. The high resolution scheme for the boundary treatment does not improve forecasts significantly.The experiments also revealed some interesting phenomena such as the forecast rainfall being too small while affecting synoptic system so deep as compared with observations. Another example is the severe deformation of synoptic systems both in initial conditions and forecast fields in the presence of comp  相似文献   

11.
Through simulation of summer and winter precipitation cases in China, the cloud precipitation schemes of model were examined. Results indicate that it is discrepant between convective precipitation simulated by the Kain-Fritsch (KF) scheme and Betts-Miller (BM) scheme in summer, the former scheme is better than the latter in this case. The ambient atmosphere may be varied by different convective schemes. The air is wetter and the updraft is stronger in the KF scheme than in the BM scheme, which can induce the more grid scale precipitation in the KF scheme, i.e., the different cumulus schemes may have the different and important effect on the grid scale precipitation. However, there is almost no convective rain in winter in northern China, so the effect of cumulus precipitation on the grid scale precipitation can be disregarded. Therefore, the gird scale precipitation is primary in the winter of northern China.  相似文献   

12.
In this study, the improved high-resolution regional climate model of the China National Climate Center (RegCM_NCC) is used to examine the sensitivity of the simulated circulation and rainfall during the South China Sea summer monsoon (SCSSM) period during 1998 in an effort to compare to other cumulus param- eterization schemes. The investigation has indicated that the model is capable of simulating the seasonal march of the SCSSM and that the results were very sensitive to the choice of cumulus parameterization schemes. It seems that the Kuo cumulus parameterization scheme simulates the process of the SCSSM onset reasonably well, which can reproduce the onset timing and dramatic changes before and after the onset, especially the upper- and lower-level wind-fields. However, there are still some discrepancies between the simulations and observations. For example, the model can not completely simulate the intensity of the rainfall or the location of the western Pacific subtropical high as well as the feature of the rapid northward propagation of seasonal rain belt.  相似文献   

13.
An improved scheme of spectral model has been investigated in this paper. Through the introduction of a reference atmosphere, prognostic variables become smoother on the tilted sigma-surface over mountains or a frontal zone, and thus truncation errors are reduced. As a result, the problems about Gibbs waves and negative value of model topography on the sea, which are encountered in the current spectral model in the world, can be solved by the improved scheme. For comparison we have performed the numerical integrations of barotropic and baroclinic Rossby-Haurwitz waves, as well as the prediction of real cases with the improved scheme and the current scheme of spectral model. These results show that the scheme presented in the paper is better than the current scheme of spectral model.  相似文献   

14.
A large area of unrealized precipitation is produced with the standard convective parameterization scheme in a high-resolution model, while subgrid-scale convection that cannot be explicitly resolved is omitted without convective parameterization. A modified version of the convection scheme with limited mass flux at cloud base is introduced into a south-China regional high-resolution model to alleviate these problems. A strong convection case and a weak convection case are selected to analyze the influence of limited cloud-base mass flux on precipitation forecast. The sensitivity of different limitation on mass flux at cloud base is also discussed. It is found that using instability energy closure for Simplified Arakawa- Schubert Scheme will produce better precipitation forecast than the primary closure based on quasi-equilibrium assumption. The influence of the convection scheme is dependent on the upper limit of mass flux at cloud base. The total rain amount is not so sensitive to the limitation of mass flux in the strong convection case as in the weak one. From the comparison of two different methods for limiting the cloud-base mass flux, it is found that shutting down the cumulus parameterization scheme completely when the cloud-base mass flux exceeds a given limitation is more suitable for the forecast of precipitation.  相似文献   

15.
IMPACTS OF CUMULUS PARAMETERIZATION AND RESOLUTION ON THE MJO SIMULATION   总被引:1,自引:1,他引:0  
Madden-Julian Oscillations (MJO) in six integrations using an AGCM with different cumulus parameterization schemes and resolutions are examined to investigate their impacts on the MJO simulation. Results suggest that the MJO simulation can be affected by both resolution and cumulus parameterization, though the latter, which determines the fundamental ability of the AGCM in simulating the MJO and the characteristics of the simulated MJO, is more crucial than the former. Model resolution can substantially affect the simulated MJO in certain aspects. Increasing resolution cannot improve the simulated MJO substantially, but can significantly modulate the detailed character of the simulated MJO; meanwhile, the impacts of resolution are dependent on the cumulus parameterization, determining the basic features of the MJO. Changes in the resolution do not alter the nature of the simulated MJO but rather regulate the simulation itself, which is constrained by cumulus parameterization schemes. Therefore, the vertical resolution needs to be increased simultaneously. The vertical profile of diabatic heating may be a crucial factor that is responsible for these different modeling results. To a large extent, it is determined by the cumulus parameterization scheme used.  相似文献   

16.
Ozone chemistry processes are analyzed during a cumulus cloud process with the model(lCCCM)described in Part Ⅰ.The simulation results show that entire cumulus cloud process can be well described with the development of vertical velocities and liquid water content which are the two most outstanding features of cumulus clouds.Ozone chemistry is strongly influenced by cumulus clouds.NOx can be transported upwards above 4 km in the first 20 minutes of the convection event and form a relative higher concentration area which enhances the production of ozone.Two areas appear during the convection event:area of net ozone production and area of net ozone depletion.The area of ozone depletion coincides with the area of liquid water within cloud.Results show that the aqueous phase(cloud water and rainwater)can alter gas ozone level through two ways:one is scavenging free radicals(HO2)from the gas phase and thereby inhibiting the reactions of transformation to NO2 from NO,which results in reduction of the gas source of ozone;the other is aqueous phase chemical reactions which consume ozone in the aqueous phase.Calculations reveal that the reaction O3+OH→HO2 is the main pathway of ozone depletion in gas phase during the process of cumulus clouds.  相似文献   

17.
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds. Accurately obtaining the entrainment rate(λ) is particularly important for its parameterization within the overall cumulus parameterization scheme. In this study, an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculate λ of cumulus clouds in a large-eddy simulation. The results demonstrate that the impro...  相似文献   

18.
Ozone chemistry processes are analyzed during a cumulus cloud process with the model(1CCCM)described in Part Ⅰ.The simulation results show that entire cumulus cloud process can bewell described with the development of vertical velocities and liquid water content which are the twomost outstanding features of cumulus clouds.Ozone chemistry is strongly influenced by cumulusclouds.NO_x can be transported upwards above 4 km in the first 20 minutes of the convection eventand form a relative higher concentration area which enhances the production of ozone.Two areas ap-pear during the convection event:area of net ozone production and area of net ozone depletion.Thearea of ozone depletion coincides with the area of liquid water within cloud.Results show that theaqueous phase(cloud water and rainwater)can alter gas ozone level through two ways:one is scav-enging free radicals(HO_2)from the gas phase and thereby inhibiting the reactions of transformationto NO_2 from NO,which results in reduction of the gas source of ozone;the other is aqueous phasechemical reactions which consume ozone in the aqueous phase.Calculations reveal that the reaction O_3+OH→HO_2 is the main pathway of ozone depletion in gas phase during the process of cumulusclouds.  相似文献   

19.
By using a two-dimensional axisymmetrical PEM in which two physical processes (the Ekman pumping and the vertical transportation of cumulus momentum) are included, the genesis and development of typhoons have been simulated. The results of numerical simulation show that the generation and structure of the typhoon simulated by the model involving both the physical processes are much close to a real one in the atmosphere as compared with that involving either the Ekman pumping or the cumulus momentum transport. Therefore, it can be suggested that the cumulus momentum transport and Ekman pumping together play an important role in the genesis and development of typhoons through the CISK mechanism.  相似文献   

20.
The MM5, which is the PSU/NCAR mesoscale nonhydrostatic limited-area model, and its adjoining modeling system are used in this paper. Taking T106 analysis data as background field the authors generate an optimal initial condition of a typhoon by using two bogus data assimilation schemes, and conduct some numerical simulating experiments. The results of No.9608 typhoon (Gloria) show that the optimal initial field have some dramatic improvements, such as inaccurate position of typhoon center, weaker typhoon circulation and incomplete inner structure of the typhoon, which are caused by shortage of data over the sea. Some improvements have been made in the track forecast. Through several comparing experiments, the initialization optimized by BDA scheme is found to be more reasonable than GFDL scheme and its typhoon track forecast is better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号