首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
本文通过“98.6”连续大暴雨过程期间物理量场的诊断,分析了热力,水汽,动力等条件对产生连续暴雨的作用,指出暴雨落区与西南低空急流,能量锋区的关系极为密切,水汽输送集中在低层及其以下,最大水汤辐合层出现的925hPa,高层辐散低层辐合的动力特征非常明显。  相似文献   

2.
利用气象观测资料和NCEP再分析资料对梅汛期江淮切变线暴雨类个例与切变线非暴雨类个例演变过程进行了合成对比分析。结果表明,形成暴雨切变线的演变历程中,存在南北风加强,切变线发展,且西南风急流引起的风速辐合加强了低空辐合。同时江苏处于高空急流入口区的右侧,高低空急流相耦合,形成了高空辐散、低空辐合的动力机制,降水过程中动力结构配置的演变特征十分鲜明。切变线南侧热力不稳定条件较好,水汽输送丰富,水汽辐合强烈,这些都有利于暴雨中尺度系统的发生、发展。因为动力、热力条件强度的不同对应不同强度的降水,区域性大暴雨的动力系统比一般暴雨更深厚,不稳定条件更强,水汽输送也更充沛。而切变线非暴雨类中,高低空风场的配置不利于降水的增强。南北风增强不明显,切变线不能得到发展,同时其南侧西南风急流没有建立,风速辐合较弱。高空急流核远离江苏,江苏上空的辐散场很弱,高空辐散、低空辐合的动力机制未能建立,动力结构的配置演变特征不明显。切变线南侧的热力不稳定度也不如暴雨类强,水汽的辐合较弱,不利于中尺度系统的发生、发展。  相似文献   

3.
利用常规观测资料和NCEP 1°×1°再分析资料,采用天气动力学诊断方法,对河北中南部春末一次回流暴雨的风场、水汽、热力条件进行了详细分析。结果表明:(1)此次大暴雨发生在地面冷锋后部、近地层超低空急流产生回流的稳定气团中,850—700 hPa低空西南急流和切变线是其主要影响系统。(2)随高空急流发展,急流中心右前方强辐合引起气流下沉,使低层高压加强、高压南部风速加大,导致山东、河北南部低空东北风加强而产生近地面层超低空东北风急流,与其上层偏南急流相遇在太行山东麓产生耦合形成回流,有利于在河北南部、山东等地形成暴雨中心。(3)强暴雨发生在西南水汽通道北侧边缘,暴雨区水汽主要为西南急流输送;强暴雨区位于水汽通量散度强辐合区与水汽通量散度强辐散区之间的水汽通量散度锋区中,低层风切变辐合对暴雨触发起到关键作用。  相似文献   

4.
分析了2010年6月1-2日粤西地区一次全区性前汛期暴雨的环流背景及影响系统,并从水汽条件、动力条件等物理量特征加以剖析.结果表明,500 hPa南支槽不断东移,南海夏季风的爆发使得水汽的输送加强,低层低涡东移,切变线南压,为这次暴雨过程创造了良好的动力条件;低空西南急流的存在加强了低层水汽和能量的输送,有利于强降水的产生;弱冷空气侵入触发了此次降水过程;该过程是粤西地区一次典型的前汛期暴雨.  相似文献   

5.
用逐日6小时一次的地面站点实况观测资料和1°×1°的NCEP分析资料,对4月4日至4月6日的这次暴雨降水过程进行降水实况和大型环流背景的分析.深入讨论了这次降水过程的水汽输送特征、大气不稳定特征和高低层的动力条件.结果表明,这次暴雨的有利天气背景为高空槽、切变线与深厚低空急流以及冷空气的相互配合.在暴雨期间,地面不稳定能量的累积和西南低空急流输送的充沛水汽,通过水汽通量分析,雨区存在深厚的水汽柱,低层正涡度中心和高层的辐散中心与地面的暴雨区相互对应,底层涡度中心和高层散度中心的增大和减小能较有效地指示降雨过程的开始和结束.  相似文献   

6.
对2009年7月3~5日玉林市一次暴雨天气过程的分析   总被引:1,自引:1,他引:0  
利用实况观测资料、自动站加密观测资料、数值预报产品和非常规观测资料,从环流背景、水汽条件、动力条件等方面,对2009年7月3~5日玉林暴雨天气过程进行诊断分析.结果表明:(1)高空低槽、低层低涡切变线和低空急流是影响此次强降水过程的主要天气系统;(2)低空急流在此次暴雨过程中促进了大气不稳定、加大了水汽输送;(3)有利的热力水汽条件和动力条件是强降水产生和维持的机制.  相似文献   

7.
利用NCEP再分析资料、气象卫星探测资料、自动气象站监测网资料对浙中南沿海2010年7月24—26日的大暴雨过程进行综合分析,分析结果表明:大暴雨的产生和低空SE风急流密切相关,一方面超地转特性引发重力惯性波,促使沿海的β中尺度雨团的发生发展;另一方面,低空SE风急流还有利于低层充沛的水汽输送、低层强辐合和涡度平流;另外,沿海地形条件对暴雨起到了较明显的增幅作用。  相似文献   

8.
2009年7月8-9日发生在泰安的暴雨天气过程主要是在副高西进北抬、副高边缘西南暖湿气流与高空低槽东移南压相结合的大尺度环流下,由黄河北部的低层中尺度切变线和鲁中地区的小低涡以及低空西南急流共同作用造成的.低空西南急流为大暴雨的产生输送了充足的水汽,低涡加大了辐合上升运动和水汽辐合.850 hPa低空大气散度辐合中心正处于泰安,垂直速度强上升区也在鲁中地区,为暴雨产生提供了足够的动力条件,低层850 hPa假相当位温θse>75 ℃的高能舌为这次暴雨提供了不稳定能量.  相似文献   

9.
东北冷涡背景下浙江省两次强降水过程的对比分析   总被引:3,自引:0,他引:3  
受东北冷涡西南部冷空气南下影响,2009年6月初浙江省连续发生了两次不同特点的强降水过程。利用常规气象观测资料、自动站资料、NCEP再分析资料及卫星TBB资料,对这两次东北冷涡背景下的强降水天气过程的大尺度环流背景和动力、热力及水汽输送条件进行对比分析。结果表明:同在东北冷涡天气背景下,由于中低层温度场配置不同、上下游系统强弱不同,导致浙江省发生的天气现象不同。6月2日降水是一次连续的区域性暴雨过程,雨带呈带状分布,以层状云降水为主,其低层为大范围的辐合,高层辐散,且低层辐合强于高层辐散;低空存在西南急流,为暴雨提供了重要的水汽和动力条件,大气层结比较稳定。6月5日强降水是一次强对流天气过程,降水分布不均匀,强度大,历时短,高、低空没有大范围的辐合辐散区,也没有低空西南急流,前期水汽条件较差,降水过程以热力作用为主;大气层结不稳定触发了强对流天气的发生,出现局地暴雨。两类暴雨的预报着眼点分别为:第1类区域性暴雨的预报重点为高层辐散、低层辐合结构和低空西南急流;第2类局地性暴雨的预报重点为大气的不稳定度与东北冷涡后部冷空气的干侵入。  相似文献   

10.
汪丽  陈静  李淑君 《高原气象》2004,23(Z1):31-36
应用中国气象局T213客观分析资料,对四川盆地2003年8月28日~9月1日发生区域性特大暴雨的成因进行了分析.结果表明,南支低空急流的建立为该次暴雨提供了充沛的水汽输送与水汽辐合,中低层冷平流与低空急流的风速脉动是该次暴雨过程的触发机制,西南低涡是暴雨开始后才生成的,但大气低层辐合、高层辐散产生的抽气机效应促使上升运动加强,而上升运动区与正涡度区的耦合又使西南低涡得以发展和维持,给四川盆地带来更强的降水.  相似文献   

11.
登陆热带气旋与夏季风相互作用对暴雨的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
利用《热带气旋年鉴》资料、NCEP/NCAR再分析资料采用动态合成分析方法,研究了登陆热带气旋降水与夏季风急流之间的关系,同时对登陆热带气旋与夏季风急流发生相互作用的典型个例强热带风暴Bilis (0604) 利用数值模拟方法研究了二者之间的相互作用对暴雨的影响。结果表明:登陆后造成大范围强降水的热带气旋往往与低层急流长时间相连,其水汽通量和潜热能显著大于弱降水热带气旋。数值试验结果表明:夏季风低空急流向热带气旋输送水汽对热带气旋结构维持有利,当水汽输送被截断后,热带气旋气旋性结构被破坏,强降水减弱、范围明显缩小;季风急流风速增强时可增加水汽通量输送,使得强降水范围增加、强度增强;在夏季风影响背景下,热带气旋在陆上的移动改变水汽和不稳定能量的分布,而热带气旋本身独特的动力结构使得强降水强度增加。  相似文献   

12.
2013年5月14—16日江西暴雨过程成因及非常规资料特征分析   总被引:1,自引:0,他引:1  
利用常规观测资料、NCEP/NCAR 1°×1°再分析资料、风廓线雷达、GPS/MET可降水量等非常规资料,对2013年5月14—16日江西区域性暴雨的成因进行了分析。结果表明:1)此次暴雨过程较强的动力条件和水汽条件是在高空低槽、中低层切变线、西南急流、低涡的共同作用下形成的。2)低层暖湿气流与高层干冷空气的配置有利于热力不稳定能量积聚;稳定度(θse500-850)密集区有利于激发中尺度对流云团发生发展;较强的垂直风切变对不稳定能量的释放和对流性暴雨的产生起到了触发的作用。3)风廓线雷达监测的超低空西南急流脉动与下风方地区的强降水相对应;该雷达监测的中低层风场特征对辅助分析天气尺度系统演变有一定的参考;风廓线雷达特征表现的强信噪比、较大的垂直向下运动与本站的强降水对应。4)强降水落区基本与可降水量(PWV)等值线密集带相对应;最大雨强常在可降水量值达到最高点之后1—3 h出现;在降水出现前站点的PWV值增幅越大,上升至高位值后维持时间越长,同时又有动力触发,对应该站点降水量也越大。  相似文献   

13.
梅雨锋强降水与低空急流日变化的观测分析和数值模拟   总被引:6,自引:4,他引:6  
利用地面加密自动站逐小时观测资料和ERA-Interim再分析资料,分析了2011年6月江淮流域的5次强降水过程和西南低空急流的日变化特征。发现强降水的日变化与西南低空急流的日变化一致:02—08时增强,14时减弱。这主要是由于夜间边界层内的惯性振荡,导致西南低空急流增强从而使得梅雨锋水汽通量辐合增强,降水增强;而白天由于边界层混合摩擦力增大,致使西南低空急流减弱或消失,降水减弱。WRF数值模拟试验不仅重现了观测的日变化特征,而且证实了江淮暴雨和西南低空急流的日变化主要是由非地转风的日变化造成:白天边界层混合强,风为次地转;而夜间边界层混合消失,气压梯度力和科氏力平衡的惯性振荡使得风为超地转   相似文献   

14.
颜玲  周玉淑  刘宣飞 《大气科学》2017,41(2):289-301
利用NCEP/NCAR(美国国家环境预报中心/国家大气研究中心)的全球预报系统(GFS)再分析资料、欧洲气象中心(ERA-interim)资料以及中国气象局观测站点的实况降水观测结合CMORPH卫星反演降水资料,对2014年第10号台风Matmo生成后西北行并登陆台湾及福建过程中的特征进行了分析,揭示出Matmo移动路径主要受西太平洋副热带高压(简称西太副高)外围引导气流影响。动、热力物理量场分析表明,Matmo在登陆福建前后,福建上空一直维持深厚的涡旋结构,福建东南部上空的上升区与台湾海峡及福建西部附近的下沉运动区形成明显的垂直环流圈。同时,南海上空有明显的西南急流(风速大于16 m s-1),Matmo的水汽来源主要有两条,分别为孟加拉湾和南海以及西太副高南侧。充足的水汽输送及低层水汽辐合抬升有利于Matmo登陆后的强降水发生和维持。Matmo登陆福建后仍然保持低层辐合、高层辐散,有利于持续暴雨的发生。Matmo登陆福建期间始终处于风速垂直切变小值区(小于9 m s-1)中,环境风速的弱垂直切变有利于Matmo暖心结构及高空辐散形势的维持,是Matmo在登陆后依然能维持自身强度不衰减的原因之一。  相似文献   

15.
利用气象观测资料和美国NCEP分析资料,研究2006年夏季一次松嫩平原暴雨的特点与成因。结果表明:强雨区始终位于高空西北风急流出口区左侧与西南风急流后方;500 hPa西风槽配合850 hPa低涡东移,蒙古锋面气旋强烈发展,地面倒槽接近东北平原;低空急流出现在最强降雨之后。暴雨之前齐齐哈尔单站K指数、可降水量以及湿理查逊数负值达到最大值;暴雨之后A指数、中高层平均比湿与相对湿度达到最大值;暴雨水汽源地位于超强台风桑美外围东海到日本以南洋面上;强降雨以前低层水汽平流辐合较强,强降雨时水汽辐合高层以平流辐合为主、低层则以风场辐合为主。  相似文献   

16.
2006年川渝两次久旱转雨过程对比分析   总被引:9,自引:0,他引:9  
汪丽  青泉  谢娜  徐琳娜 《气象》2007,33(4):53-57
利用NCEP再分析资料、T213分析资料对解除2006年川渝特大高温伏旱的两次降温、降雨过程进行物理量诊断分析。结果表明:500hPa环流形势发生转变,高空冷平流及地面冷空气的入侵对暴雨的启动至关重要。低层偏南暖湿气流的加强及风速脉动对暴雨的发生发展有重要作用;850hPa水汽辐合,高层辐散及上升运动的加强与雨强和雨区有较好的对应关系。  相似文献   

17.
冯文  吴俞  赵付竹  周玲丽 《气象科学》2017,37(6):784-796
基于天气学诊断分析方法,对2000年10月11—14日、2010年10月1—8日和2003年10月4—5日、2005年10月10-11日4次不同降水强度的秋汛期暴雨过程进行了对比分析,研究结果表明:不同强度秋汛期暴雨过程的降水分布和高低层天气系统配置具有相似性,导致秋汛期暴雨出现强度差别的主要原因是天气系统强度、位置的差异。秋汛期暴雨强个例中,南亚高压中心位于海南岛上空,辐散强度是弱个例的2~3倍,南海热带低值系统相对更强,位置偏北,副高偏弱主体退缩至海上。南海中北部出现偏东风低空急流是秋汛期暴雨过程中最显著的环流特征。在不同强度的降水个例中,急流的分布形态、强度存在明显差别。强个例中低空急流的急流核强度、长度、厚度,以及急流核上方的风速梯度均远大于弱个例,且水平风随高度顺时针旋转现象十分显著,出现强的暖平流。此外,最强降水日中强个例的低空急流核位于海南岛东部近海上空,在水平方向上稳定少动,垂直方向和风速上则脉动剧烈。弱个例的急流核在水平方向上东西振荡明显,在垂直高度和风速上变化很小。秋汛期暴雨强个例的水汽主要由偏南风、偏东风和东北风3支气流输送而来,既有经向输送也有纬向输送,弱个例的水汽以经向输送为主,多为偏东气流所致。  相似文献   

18.
利用多普勒雷达风廓线产品、ERA5再分析资料和WRF模式,分析了2018年6月27日皖北一次特大暴雨过程中边界层急流的日变化特征及其对特大暴雨形成的作用。结果表明:特大暴雨发生期间存在边界层急流,急流最强达到了18 m·s-1,强降水主要发生在急流快速增强的时段;急流前部的边界层辐合线是对流的触发因子,强降水落区位于急流核前部。急流为对流系统加强提供水汽和能量,且边界层急流和雷暴高压对峙使对流系统稳定少动,在对流系统西侧激发新的对流单体,有利于特大暴雨的发生;此次过程中天气系统的影响时间主要决定了强降水的落区,而边界层急流的日变化决定了强降水发生的时间段;边界层急流在夜间具有超地转特征,午后具有次地转特征,地转偏差和水平平流作用是导致夜间边界层急流增强的主要原因。  相似文献   

19.
一次梅雨暴雨过程的数值模拟   总被引:3,自引:1,他引:2       下载免费PDF全文
运用中尺度暴雨MRM模式,采用常规报文资料作为初始场,对2003年7月8-10日的一次江淮地区暴雨过程进行数值模拟。结果表明:该模式对降水场模拟结果同实况基本相似,模式对暴雨的位置、强度、中心都有较好的模拟,嬲评分较高;西南气流对水汽的输送作用及江淮地区上空水汽通量的高值区,为暴雨的形成与维持提供了重要的水汽条件,水汽辐合区与暴雨落区相对应;中低层辐合、高层辐散的散度垂直分布形势,对暴雨的发生提供了十分有利的动力条件;强降雨出现在低层正涡度中心和负散度中心附近。  相似文献   

20.
A heavy rainfall event caused by a mesoscale convective system (MCS), which occurred over the Yellow River midstream area during 7–9 July 2016, was analyzed using observational, high-resolution satellite, NCEP/NCAR reanalysis, and numerical simulation data. This heavy rainfall event was caused by one mesoscale convective complex (MCC) and five MCSs successively. The MCC rainstorm occurred when southwesterly winds strengthened into a jet. The MCS rainstorms occurred when low-level wind fields weakened, but their easterly components in the lower and boundary layers increased continuously. Numerical analysis revealed that there were obvious differences between the MCC and MCS rainstorms, including their three-dimensional airflow structure, disturbances in wind fields and vapor distributions, and characteristics of energy conversion and propagation. Formation of the MCC was related to southerly conveyed water vapor and energy to the north, with obvious water vapor exchange between the free atmosphere and the boundary layer. Continuous regeneration and development of the MCSs mainly relied on maintenance of an upward extension of a positive water vapor disturbance. The MCC rainstorm was triggered by large range of convergent ascending motion caused by a southerly jet, and easterly disturbance within the boundary layer. While a southerly fluctuation and easterly disturbance in the boundary layer were important triggers of the MCS rainstorms. Maintenance and development of the MCC and MCSs were linked to secondary circulation, resulting from convergence of Ekman non-equilibrium flow in the boundary layer. Both intensity and motion of the convergence centers in MCC and MCS cases were different. Clearly, sub-synoptic scale systems in the middle troposphere played a leading role in determining precipitation distribution during this event. Although mesoscale systems triggered by the sub-synoptic scale system induced the heavy rainfall, small-scale disturbances within the boundary layer determined its intensity and location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号