首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual aerosol particles collected in the Negev desert in Israel during a summer and winter campaign in 1996–1997 were analysed by scanning electron microscopy with energy-dispersive X-ray analysis. Hierarchical cluster analysis was performed to interpret the data on the basis of particle diameter and composition. Eleven particle classes (groups) provided clues on sources and/or particle formation. The summer samples were enriched in sulphates and mineral dusts; the winter samples contained more sea salts, aged sea salts, and industrial particles. The fine size fraction below 1 m diameter was enriched in secondary particles and showed evidence of atmospheric processing. The secondary sulphate particles were mainly attributed to long-range transport. A regional conversion from calcite to calcium sulphate occurred during summer. Industrial particles originating from local pollution appeared during winter.  相似文献   

2.
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m− 3 and 19.9 to 28.2 μg m− 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

3.
Growth of fine aerosol particles is investigated during the Aerosol–CCN–Cloud Closure Experiment campaign in June2013 at an urban site near Beijing. Analyses show a high frequency(~ 50%) of fine aerosol particle growth events, and show that the growth rates range from 2.1 to 6.5 nm h~(-1) with a mean value of ~ 5.1 nm h~(-1). A review of previous studies indicates that at least four mechanisms can affect the growth of fine aerosol particles: vapor condensation, intramodal coagulation,extramodal coagulation, and multi-phase chemical reaction. At the initial stage of fine aerosol particle growth, condensational growth usually plays a major role and coagulation efficiency generally increases with particle sizes. An overview of previous studies shows higher growth rates over megacity, urban and boreal forest regions than over rural and oceanic regions. This is most likely due to the higher condensational vapor, which can cause strong condensational growth of fine aerosol particles.Associated with these multiple factors of influence, there are large uncertainties for the aerosol particle growth rates, even at the same location.  相似文献   

4.
Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter 0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter 0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.  相似文献   

5.
通过实验收集大气颗粒物,对南京地区大气气溶胶谱分布进行了描述,对气溶胶分布与相对湿度的相关性进行了探讨。建立了南京地区7—11月气溶胶化学组分的月平均模型,得出气溶胶等效复折射率的预测方法。结果表明:南京地区的大气气溶胶颗粒物,峰值粒径在80~100 nm范围,属于典型的城市型气溶胶。数浓度与相对湿度的相关性与季节和粒径大小有关,在6—9月,相对湿度与细粒子数浓度呈负相关,与粗粒子呈正相关,在10—11月相反,且易受极端天气影响。建立的干气溶胶等效复折射率月平均模型,结合湿度修正模型得到某一日的复折射率,与AERONET站点数据进行了对比,结果较为一致,误差范围在0~0.03。  相似文献   

6.
Characterizations of urban and regional sources of particulate matter (PM) were performed in the Milan area (North of Italy) during Föhn and stagnant (non-Föhn) conditions. The measurements were performed at two different places: in an urban area North of Milan (Bresso) and in a regional area at the EMEP-GAW station in Ispra (about 65 km NW from Milan) during the winter periods of the years 2002–2007. Particle size distributions and chemical bulk analysis of aerosols are combined with single particle mass spectrometry to obtain information about the chemical content of the particles and their mixing state. Föhn conditions are characterized by extremely clean background air from which background aerosol is scavenged, and consequently local sources (here defined as sources between the sampling sites and the mountain range top about 100–150 km away depending on the wind direction) determine the aerosol properties.It was observed that during Föhn events the accumulation mode in the size range 50 nm < d < 300 nm practically disappears and that the size fraction below 50 nm dominates the total number distribution. The significant change in the number size distribution and the large decrease in PM10 mass during Föhn events are accompanied by a significant change in the chemical composition of the particles. Results from bulk chemical analysis showed high amounts of carbonaceous compounds and very low concentrations of ammonium nitrate (as indicator for secondary chemistry) during Föhn episodes, in contrast to stagnant conditions, when secondary components are dominating the aerosol composition. Single particle measurements confirm the high contribution of carbonaceous compounds in locally emitted particles.It was concluded that particles that originated in the urban area come mainly from combustion processes, especially direct traffic emissions, domestic heating and industrial activities, whereas the regionally emitted particles are different with much less traffic contribution.We estimate that under prevailing (non-Föhn) winter conditions, about 50–65% of the aerosol mass load in the city of Milan are caused by local emissions, and about 35–50% come from regional background. This finding suggests that in order to improve air quality in a big city like Milan, it is important to combine local traffic restriction interventions with other long-term regional scale air-quality-measures.  相似文献   

7.
《Atmospheric Research》2009,91(2-4):253-263
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m 3 and 19.9 to 28.2 μg m 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

8.
I.INTRODUCTIONAerosolcompositionisapieceofimportantinformationforradiationtransfer.Twoparameters,narnely,totalloadingandchemi...  相似文献   

9.
Terry Deshler   《Atmospheric Research》2008,90(2-4):223-ICNAA07
Stratospheric aerosol, noted after large volcanic eruptions since at least the late 1800s, were first measured in the late 1950s, with the modern continuous record beginning in the 1970s. Stratospheric aerosol, both volcanic and non-volcanic are sulfuric acid droplets with radii (concentrations) on the order of 0.1–0.5 µm (0.5–0.005 cm− 3), increasing by factors of 2–4 (10–103) after large volcanic eruptions. The source of the sulfur for the aerosol is either through direct injection from sulfur-rich volcanic eruptions, or from tropical injection of tropospheric air containing OCS, SO2, and sulfate particles. The life cycle of non-volcanic stratospheric aerosol, consisting of photo-dissociation and oxidation of sulfur source gases, nucleation/condensation in the tropics, transport pole-ward and downward in the global planetary wave driven tropical pump, leads to a quasi steady state relative maximum in particle number concentration at around 20 km in the mid latitudes. Stratospheric aerosol have significant impacts on the Earth's radiation balance for several years following volcanic eruptions. Away from large eruptions, the direct radiation impact is small and well characterized; however, these particles also may play a role in the nucleation of near tropopause cirrus, and thus indirectly affect radiation. Stratospheric aerosol play a larger role in the chemical, particularly ozone, balance of the stratosphere. In the mid latitudes they interact with both nitrous oxides and chlorine reservoirs, thus indirectly affecting ozone. In the polar regions they provide condensation sites for polar stratospheric clouds which then provide the surfaces necessary to convert inactive to active chlorine leading to polar ozone loss. Until the mid 1990s the modern record has been dominated by three large sulfur-rich eruptions: Fuego (1974), El Chichón (1982) and Pinatubo (1991), thus definitive conclusions concerning the trend of non-volcanic stratospheric aerosol could only recently be made. Although anthropogenic emissions of SO2 have changed somewhat over the past 30 years, the measurements during volcanically quiescent periods indicate no long term trend in non-volcanic stratospheric aerosol.  相似文献   

10.
As a component of the Canadian Arctic Haze Study, held coincident with the second Arctic Gas and Aerosol Sampling Program (AGASP II), vertical profiles of aerosol size distribution (0.17 m), light scattering parameters and cloud particle concentrations were obtained with an instrumented aircraft and ground-based lidar system during April 1986 at Alert. Northwest Territories. Average aerosol number concentrations range from about 200 cm–3 over the Arctic ice cap to about 100 cm–3 at 6 km. The aerosol size spectrum is virtually free of giant or coarse aerosol particles, and does not vary significantly with altitude. Most of the aerosol volume is concentrated in the 0.17–0.50 m size range, and the aerosol number concentration is found to be a good surrogate for the SO4 = concentration of the Arctic haze aerosol. Comparison of the aircraft and lidar data show that, when iced crystal scattering is excluded, the aerosol light scattering coefficient and the lidar backscattering coefficient are proportional to the Arctic haze aerosol concentration. Ratios of scattering to backscattering, scattering to aerosol number concentration, and backscattering to aerosol number concentration are 15.3 steradians, 1.1×10–13 m2, and 4.8×10–15 m2 sr–1, respectively. Aerosol scattering coefficients calculated from the measured size distributions using Mie scattering agree well with measured values. The calculations indicate the aerosol absorption optical depth over 6 km to range between 0.011 and 0.018. The presence of small numbers of ice crystals (10–20 crystals 1–1 measured) increased light scattering by over a factor of ten.  相似文献   

11.
2008年北京奥运会期间大气气溶胶物理特征分析   总被引:5,自引:0,他引:5  
应用MODIS卫星的气溶胶产品资料和地面的光学粒子计数器的资料,对比分析了北京地区2006、2007、2008年7~9月的气溶胶光学厚度、细粒子光学厚度、Angstrom指数、气溶胶粒子数浓度谱及体积谱,发现2008年北京奥运会期间(7月20日~9月20日)的气溶胶光学厚度比2006、2007年同期明显降低,气溶胶细模态光学厚度占总光学厚度的比上升,Angstrom指数上升,气溶胶细粒子数浓度没有明显相对变化,而粗粒子数浓度则减少约50%.利用大气标高,将MODIS反演的气溶胶柱的质量浓度转化为地面气溶胶质量浓度.用粒子计数器得到的体积谱,在假定气溶胶粒子密度的情况下,计算出其质量浓度.将这两种方法得到的气溶胶质量浓度与国家环境保护部公布的空气质量指数换算得到的可吸入颗粒物(PM10)质量浓度进行比较.结果表明:北京奥运期间空气质量总体达到了国家二级空气质量标准;与2006、2007年同期相比,2008年气溶胶PM10质量浓度明显下降,而这主要是由气溶胶粗粒子的减少引起的.  相似文献   

12.
Measurements from July 4 to July 8, 2005 by a high resolution visible radiometer, a Raman lidar, a ground particulate matter sampler, and ground meteorological sensors have been combined in synergy to infer the intrusion over south-east Italy, of air masses from north-west Sahara, the Atlantic Ocean, and the continental Europe. It is shown that backscatter coefficient, depolarization-ratio, and lidar ratio vertical profiles represent the best tools to detect the intrusion of long range transported air masses and to monitor their effects on the vertical distribution of aerosol optical and microphysical properties. High resolution radiometers are instead important tools to monitor changes on columnar aerosol properties and size distributions.Backscatter coefficient, depolarization-ratio, and lidar ratio vertical profiles have revealed that aerosol optical and microphysical properties significantly changed with time and space during African dust outbreaks: the intrusion of dust particles that at first occurred above 2 km of altitude extending up to 6 km, affected the all aerosol load down to ground within few hours. Aerosol size distributions showed during dust events a clear bimodality with an accumulation mode maximum at 0.24 µm and a coarse mode maximum at 0.94 μm. Conversely, we have found that during the advection of air masses from the Atlantic and continental Europe, aerosol particles were mainly located below 2 km, their optical and microphysical properties were affected by smaller changes in time and space, and were characterized by depolarization ratios rather close to those due to a pure molecular atmosphere. In this case bimodal size distributions with an accumulation mode showing two sub-modes at 0.16 μm and 0.24 μm, respectively and a coarse mode centred at 0.94 μm have also been observed.  相似文献   

13.
Aerosol size spectra (d=10 nm–10 μm) were measured with an electrical aerosol spectrometer (EAS) at Mace Head on the west coast of Ireland. Several small aerosol particle (diameter 10–32 nm) concentration bursts were observed during the measurement period. Relationships between the events, air mass trajectories, tide height, and meteorological parameters are examined. Series of bursts were observed when a spectral transformation due to subsequent particle growth from 10 to 56–100 nm can be identified in an Eulerian experiment. Particle growth rates of between 1 and 3 nm/h were determined. These bursts appear in cold and comparatively clean arctic or polar air masses with temperature and relative humidity fluctuations, and do not correlate with low tide in some cases. These episodes, similar to those frequently found in the continental boundary layer, are thought to occur over a wide area and, for clear detection, require stable airflow for a few days. Elevated small-particle concentration events are more common during low tide or shortly after, and are typically associated with low wind speeds. Here, the increased shore exposure during low tide is thought to influence the nucleation and the subsequent growth of these aerosol particles. The occurrences of the bursts are found to depend on local wind direction. The highest d=10–32 nm particle concentrations appeared for wind sectors furthest from the tidal regions when the wind direction was 150–160°(south-easterly). Most of the events occurred during daytime when solar irradiation is most intense.  相似文献   

14.
利用2004~2009年秋季臭氧监测仪的3级观测资料,分析了华北及周边地区的气溶胶光学性质。结果表明:大部分区域气溶胶光学厚度(Aerosol Optical Depth,AOD)和气溶胶紫外吸收指数(Ultra Violet Aerosol Index,UVAI)平均值分别高于0.8和0.75;高气溶胶事件发生频次统计表明,AOD高值(>0.4)频发于北京及其周边地区,UVAI高值(>1.0)频发于河北中部及南部地区;华北及其周边地区绝大多数城市平均AOD和UVAI分别高于0.7和0.60,而张家口、承德和阳泉3个城市的平均AOD和UVAI值分别低于0.6和0.65。作者进一步研究了2006年10月30日的一次霾事件中气溶胶的光学性质以及其时空分布特征。结果表明,霾由华北地区输送至渤海海域,并向东北方向输送;香河地基EZlidar激光雷达的垂直观测结果进一步表明,工业和城市型气溶胶主要集中在1500m以下,其中高浓度部分集中于650m以下,平均峰值位于285m,平均消光系数达2.15km-1;CALIOP卫星观测资料结合后向轨迹分析表明,大气低层气溶胶类型以工业和城市型气溶胶为主,而高层则由于上游大气输送沙尘粒子的混入使气溶胶类型转变为污染—沙尘型。霾事件期间,香河站CE-318太阳光度计观测的AOD平均值(标准差)从背景值0.08(0.04)升高至1.17(0.14);ngstrm指数平均值(标准差)从背景值0.90(0.10)升至1.12(0.09);核模态、积聚模态和粗模态的气溶胶粒子数柱总量均增加,其中细粒子所占比例明显升高。  相似文献   

15.
利用AERONET观测资料从气候学的角度比较分析了2001-2011年东亚地区沙尘天气发生时沙尘源区和下游区大气气溶胶光学特性。结果表明:沙尘期间沙尘源区气溶胶光学厚度明显大于下游区,而Angstr?m波长指数却小于下游区,当沙尘暴出现时会降至零甚至负值。气溶胶粒子尺度体积谱分布除敦煌为单峰外,其余各站均呈双峰分布,香河和北京的细粒子浓度明显大于西北地区,这可能是由细的沙尘粒子和污染气溶胶共同造成。在440-1020 nm范围内,中国地区气溶胶单次散射反照率平均值为0.93,韩国和日本站分别为0.93和0.94。沙尘源区与下游区相比,复折射指数实部偏大,虚部偏小。总体来说,沙尘天气下东亚地区在4个波段内平均不对称因子为0.70。  相似文献   

16.
《Atmospheric Research》2009,91(2-4):159-169
Characterizations of urban and regional sources of particulate matter (PM) were performed in the Milan area (North of Italy) during Föhn and stagnant (non-Föhn) conditions. The measurements were performed at two different places: in an urban area North of Milan (Bresso) and in a regional area at the EMEP-GAW station in Ispra (about 65 km NW from Milan) during the winter periods of the years 2002–2007. Particle size distributions and chemical bulk analysis of aerosols are combined with single particle mass spectrometry to obtain information about the chemical content of the particles and their mixing state. Föhn conditions are characterized by extremely clean background air from which background aerosol is scavenged, and consequently local sources (here defined as sources between the sampling sites and the mountain range top about 100–150 km away depending on the wind direction) determine the aerosol properties.It was observed that during Föhn events the accumulation mode in the size range 50 nm < d < 300 nm practically disappears and that the size fraction below 50 nm dominates the total number distribution. The significant change in the number size distribution and the large decrease in PM10 mass during Föhn events are accompanied by a significant change in the chemical composition of the particles. Results from bulk chemical analysis showed high amounts of carbonaceous compounds and very low concentrations of ammonium nitrate (as indicator for secondary chemistry) during Föhn episodes, in contrast to stagnant conditions, when secondary components are dominating the aerosol composition. Single particle measurements confirm the high contribution of carbonaceous compounds in locally emitted particles.It was concluded that particles that originated in the urban area come mainly from combustion processes, especially direct traffic emissions, domestic heating and industrial activities, whereas the regionally emitted particles are different with much less traffic contribution.We estimate that under prevailing (non-Föhn) winter conditions, about 50–65% of the aerosol mass load in the city of Milan are caused by local emissions, and about 35–50% come from regional background. This finding suggests that in order to improve air quality in a big city like Milan, it is important to combine local traffic restriction interventions with other long-term regional scale air-quality-measures.  相似文献   

17.
城市地区大气气溶胶颗粒的物理化学特性复杂,理清单颗粒精细的化学成分和混合状态对于大气污染溯源和精细治理具有重要意义。本研究利用被动式气溶胶采样器分别在山东省日照市城区和钢铁园区两个区域进行了定点采样,并利用智能扫描电镜环境颗粒物分析系统(IntelliSEM EPAS)对采集的大气单颗粒物样品进行分析。结果表明,日照市大气颗粒物主要由不规则碳质颗粒(C-rich)、含硫颗粒(Ca-S、Na-S-Ca)与矿物颗粒组成。其中,城区样品中C-rich颗粒数量贡献为53.5%,是钢铁园区样品的2.5倍,大于1 μm的颗粒物数量为9.0%,是钢铁园区样品的1.7倍,城区居民活动和工业过程是城市中大气颗粒物特别是二次细颗粒的主要来源。钢铁园区样品中含硫颗粒物数量贡献为72.9%,含硫颗粒物质量贡献为30.9%,富铁颗粒物质量贡献为5.3%,分别是城区样品的1.8倍、3.6倍和2.9倍,表明钢铁园区大气颗粒物的主要来源包括钢铁企业排放的一次污染物及其转化生成的二次细颗粒物。  相似文献   

18.
Characterization of aerosols is required to reduce uncertainties in satellite retrievals of global aerosols and for modeling the effects of these aerosols on climate.Aerosols in the North China Plain(NCP) are complex,which provides a good opportunity to study key aerosol optical properties for various aerosol types.A cluster analysis of key optical properties obtained from Aerosol Robotic Network(AERONET) data in Beijing and Xianghe during 2001-11 was performed to identify dominant aerosol types and their associated optical properties.Five dominant aerosol types were identified.The results show that the urban/industrial aerosol of moderate absorption was dominant in the region and that this type varied little with season.Urban/industrial aerosol of weak absorption was the next most common type and mainly occurs in summer,followed by that strong aerosols occurring mainly in winter.All were predominantly fine mode particles.Mineral dust(MD) and polluted dust(PD) occurred mainly in spring,followed by winter,and their absorption decreased with wavelength.In addition,aerosol dynamics and optical parameters such as refractive index and asymmetry factor were examined.Results show that the size of coarse mode particles decreased with AOD indicating the domination of external mixing between aerosols.  相似文献   

19.
During the spring of 2005, the total particle concentrations and the submicron aerosol size distributions were measured on board the research vessel over the south sea of Korea and the Korean sector of the Yellow Sea. Similar measurements were made over the East China Sea in autumn 2005. The aerosol properties varied dynamically according to the meteorological conditions, the proximity to the land masses and the air mass back trajectories. The average total particle concentration was the lowest over the East China Sea, 4335 ± 2736 cm 3, but the instantaneous minimum, 837 cm 3, for the entire ship measurement was recorded during the Yellow Sea cruise. There was also a long (more than 6 h) stretch of low total particle concentrations that fell as low as 1025 cm 3 during the East China Sea cruise when the ship was the farthest from the shores and the air mass back trajectories resided long hours over the sea. These observations lead to the suggestion of ~ 1000 cm 3 as the background total particle concentration over the marine boundary layer in the studied region of the Yellow Sea and the East China Sea, implying significant anthropogenic influence even for the background value. In the mean time, average aerosol size distributions were unimodal and the mode diameter ranged between 52 and 86 nm, excluding the fog periods, which suggests that the aerosols measured in this study experienced relatively less aging processes within the marine boundary layer.  相似文献   

20.
Source attribution of urban smog episodes caused by coal combustion   总被引:1,自引:0,他引:1  
Stable weather conditions together with extensive use of coal combustion often lead to severe smog episodes in certain urban environments, especially in Eastern Europe. In order to identify the specific sources that cause the smog episodes in such environments, and to better understand the mixing state and atmospheric processing of aerosols, both single particle and bulk chemical characterization analysis of aerosols were performed in Krakow, Poland, during winter 2005.Real-time measurements of the bulk PM10 aerosol during a severe smog episode (PM10 mass > 400 µg m− 3) showed a stable concentration of black carbon in the aerosol, and an increase in the sulphate and chlorine mass contributions towards the end of the episode. Chemical characterization of single particles further helped to identify residential coal burning as the main source that caused this severe smog episode, consisting of single particles with major signals for carbon with simultaneous absence of sulphate, chlorine and calcium. Particles from industrial coal combustion gained importance towards the end of that episode, after residential coal combustion was switched off, indicated by an increase of the percentage of sulphate and chlorine containing particles. Traffic was not a significant source during the severe smog episode. During a lighter smog episode, residential and industrial coal combustion was still predominant, with an increased contribution of traffic and processed/aged aerosols. On a clean day, particle classes containing nitrate were the most abundant. In addition, the aerosol was more internally mixed showing that there were more sources contributing to the total aerosol population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号