首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
在总结国内外企业层面温室气体核算指南的现状和发展趋势的基础上,指出了确定正确的核算边界、选取合适的排放核算范围以及选择准确的排放活动水平和排放因子数据,是中国编制企业温室气体核算指南面临的关键问题,并提出了完善中国企业层面温室气体核算体系的对策建议:一是完善中国企业温室气体排放管理的相关制度安排;二是现阶段选择企业作为核算边界,建立并完善重点企业和设施的温室气体直报系统;三是将外购电力和热力消费引起的间接排放也纳入核算体系中,并根据行业具体情况及未来发展趋势确定所包括的温室气体种类;四是完善数据计量及收集工作,加强统计工作能力建设;五是统一排放因子的选择规则,逐步建立中国的排放因子数据库;六是建议设定企业温室气体报告门槛。  相似文献   

2.
根据沈阳市72家供暖企业调研数据,利用IPCC温室气体清单方法核算供热企业碳排放量。结果表明:在151 d供暖期内,不同热源形式碳排放强度差异显著,小型分散锅炉房平均碳排放强度为58.25 kg CO2/m2,区域锅炉房为53.42 kg CO2/m2,热电联产为49.87 kg CO2/m2,组合式热源(燃煤锅炉+热泵)为34.49 kg CO2/m2,清洁能源为21.58 kg CO2/m2。基于不同热源形式碳排放强度和清洁发展机制推荐的基准线确定方法,设置了实际排放、历史排放、单体容量40 t/h以上区域锅炉房排放、热电联产排放、技术水平领先前30%和40%企业排放6种基准线情景。通过各个碳排放基准线值比较,结合沈阳市的经济技术发展水平和未来碳交易市场计划,建议选择技术水平领先前40%企业排放情景下的碳排放基准值46.57 kg CO2/m2作为沈阳市2013年供暖行业的碳排放基准线。以此基准线为起始基准线,对2014-2020年的碳排放基准线进行了预测。  相似文献   

3.
废弃物处理温室气体排放的主要排放源之一为废水(生活污水和工业废水)处理CH4排放。根据统计资料和IPCC提供的方法,选择适合中国的排放因子,分析了中国废水处理2005-2010年的CH4排放特征和2000-2010年CH4产生的各驱动因子。并且根据中国的实际情况预测和分析了中国废水处理CH4排放趋势和排放潜力。结果显示:2010年中国生活污水处理CH4排放量为61.10万t,工业废水处理的CH4排放量为162.37万t,造纸等八大行业CH4排放量达到总CH4排放量的92%以上,2005-2010年的CH4排放量逐年增加;到2020年在减排情景下,生活污水处理CH4排放量为101.36万t,减排潜力为7.63万t,比2010年排放量增加了66%;工业废水处理CH4排放量233.93万t,减排潜力为25.99万t,比2010年排放量增加了44%。  相似文献   

4.
中国大陆黑碳气溶胶排放清单   总被引:24,自引:0,他引:24       下载免费PDF全文
通过汇总基础数据,计算了中国大陆2000年高时空分辨率的黑碳排放源清单。基础数据主要来源于政府部门,包括社会-经济数据、化石燃料和生物质燃料消耗数据等,绝大部分为县级水平。一些新的、中国特有的排放因子也在计算中被使用,计算出的全国和各地区的排放量使用了0.2°×0.2°经纬度网格来显示。计算的黑碳总排放量为149.94万t,主要由燃煤和燃烧生物质所致。这一排放结果比以前的清单要高,主要是因为乡镇企业和农村居民燃煤的排放量以前被低估了。东部地区的排放量比西部地区要大。黑碳的排放具有较强的季节性,1月和12月的排放量最大,7月和8月排放量较小;排放的季节性主要是由居民采暖的季节性所致。  相似文献   

5.
推动电力行业低碳发展是中国有效控制CO2排放和推动尽早达峰的重要抓手。在分别利用学习曲线工具和自下而上技术核算方式分析风电、光伏两类主要的可再生电力和其他各类电源发展趋势的基础上,综合评估了既有政策和强化政策条件下2035年前中国电力行业能源活动碳排放变化趋势。研究发现,既有政策情景下电力行业碳排放在2030年左右达到峰值,届时非化石能源在发电量中比重为44%,而通过强化推动能源绿色低碳发展的相关政策,2025年前即可达到电力行业碳排放峰值,2030年非化石电力在发电量中比重可以提升至51%,其中可再生电力加速发展将分别贡献2025、2030和2035年当年减排量(相对于既有政策情景)的45%、54%和62%。尽管从保障电力稳定安全供应角度,煤电装机仍有一定增长空间,但考虑到电力行业绿色低碳和可持续发展的长期需求,仍应加强对煤电装机的有效控制,“十四五”期间努力将煤电装机控制在11亿kW左右的水平。  相似文献   

6.
中国交通二氧化碳排放研究   总被引:18,自引:0,他引:18       下载免费PDF全文
评述了中国全国及区域水平交通领域CO2排放研究的不足和困难,提出了道路运输、铁路运输燃油消费量的估算方法、参数及区域分配方法,并根据文献研究和公开资料进行校对,采用中国交通领域CO2排放因子,计算中国2007年全国和各省道路运输、铁路运输、航空运输和水路运输的CO2排放。中国2007年交通领域CO2排放量为4.36亿t,占2007年全国能源利用CO2排放的7%,低于2007年全球交通部门23%的排放比例。中国道路运输CO2排放占交通领域绝对主体,为86.32%。  相似文献   

7.
通过系统地比较各主要国家CO2排放总量、人均排放量及排放强度等,总结发达国家碳排放特点,分析中国碳排放历程及各阶段出现的原因。比较分析发达国家和发展中国家应对气候变化的相关政策,结合中外碳排放特征,总结中国碳排放及应对气候变化面临的主要问题。提出中国新常态下应对气候变化的建议,包括在国际层面上,积极参与气候谈判,推动国际社会低碳化发展,在中国层面上,切实改变经济增长方式,引领经济低碳发展等。  相似文献   

8.
本文应用LMDI分解分析方法对中国2000—2014年生产部门CO2排放量变化做因素分解分析,同时结合STIRPAT模型建立CO2预测模型,分析2017—2030年中国的CO2排放情况。结果表明,经济增长和能耗强度变化对中国CO2排放量变化的影响分别为114.9%、-22.6%。基于预测模型变量构建未来情景,设定正常路线、减排路线和激进路线3条路线,共包含9种情景。正常路线的低碳情景和减排路线的基准情景下可实现2025年达到CO2排放峰值,减排路线的低碳情景可实现2020年达到排放峰值。  相似文献   

9.
利用全国垃圾填埋场的点源数据,基于实际调研和实验室分析建立中国不同区域、不同规模、不同填埋时间的排放因子矩阵,采用IPCC推荐的一级降解动力学(FOD)方法自下而上地核算了中国2107个垃圾填埋场在2007年的甲烷(CH4)排放量。针对不同区域和类型的填埋场,分别就城市垃圾组分、可降解有机碳、CH4修正因子、CH4氧化系数、填埋场CH4收集率等进行了深入研究。结果显示,中国2007年填埋场CH4排放量为118.61万t,与《中华人民共和国气候变化第二次国家信息通报》2005年填埋场排放量(220万t)差异较大,其主要原因是城市垃圾填埋场统计数据的差异,例如填埋场个数及垃圾填埋量。中国绝大部分填埋场CH4年排放量在700 t以下,超过1000 t的有279个,超过1万t的仅10个。江苏省的CH4排放量最高,达到9.87万t;西藏的排放量最小,仅为0.21万t。东部江苏、广东、浙江等省的整体排放量较高,西部地区西藏、宁夏、青海等地的排放水平较低。  相似文献   

10.
华北平原是我国主要农作物产区,田间秸秆焚烧现象普遍存在,选取秋收季节(2014年10月)分析了秸秆燃烧的排放特征,利用区域化学传输模型WRF-Chem模拟研究了燃烧排放对气态前体物及其氧化产物的影响,以及最终导致的PM2.5中硫酸盐、硝酸盐和铵盐的变化。研究表明:2014年秋收季节,河南和山东等省份的秸秆燃烧排放会在东南风的输送作用下影响京津冀地区;秸秆燃烧排放大量挥发性有机物(VOCs),导致火点源及周边地区大气中主要氧化剂浓度上升,提升了区域大气氧化能力;当携带大量VOCs的秸秆燃烧烟羽与以化石燃料排放为主的城市气团相混合时,大气氧化性增强会加速城市地区人为源排放的NOx和SO2等气态前体物的氧化过程,提高硫酸盐和硝酸盐的形成速率、促进二次无机气溶胶的生成。  相似文献   

11.
Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the country of biomass origin and buy the credits (Clean Development Mechanism (CDM) and Joint Implementation (JI)). This study analyzes which of those options is optimal for transportation fuels and looks for the key variables that influence the result. In two case studies (Mozambique and Brazil), the two trading systems are compared for the amount of credits generated, land-use and associated costs. We found costs of 17–30 euro per ton of carbon for the Brazilian case and economic benefits of 11 to 60 euros per ton of carbon avoided in the Mozambique case. The impact of carbon changes related to direct land-use changes was found to be very significant (both positive and negative) and can currently only be included in emission credit trading, which can largely influence the results. In order to avoid indirect land-use changes (leakage) and consequent GHG emissions, it is crucial that bioenergy crop production is done in balance with improvements of management of agriculture and livestock management. Whatever trading option is economically most attractive depends mainly on the emission baseline in the exporting (emission credit trading) or importing (physical trading) country since both bio- and fossil fuel prices are world market prices in large scale trading systems where transportation costs are low. Physical trading could be preferential since besides the GHG reduction one could also benefit from the energy. It could also generate considerable income sources for exporting countries. This study could contribute to the development of a methodology to deal with bio fuels for transport, in Emission Trading (ET), CDM and the certification of traded bio fuels.  相似文献   

12.

The expected growth in the demand for passenger and freight services exacerbates the challenges of reducing transport GHG emissions, especially as commercial low-carbon alternatives to petroleum fuels are limited for shipping, air and long-distance road travel. Biofuels can offer a pathway to significantly reduce emissions from these sectors, as they can easily substitute for conventional liquid fuels in internal combustion engines. In this paper, we assess the potential of bioenergy to reduce transport GHG emissions through an analysis leveraging various integrated assessment models and scenarios, as part of the 33rd Energy Modeling Forum study (EMF-33). We find that bioenergy can contribute a significant, albeit not dominant, proportion of energy supply to the future transport sector: in scenarios aiming to keep the temperature increase below 2 °C by the end of the twenty-first century, models project that in 2100 bioenergy can provide on average 42 EJ/yr (ranging from 5 to 85 EJ/yr) for transport (compared to 3.7 EJ in 2018), mainly through lignocellulosic fuels. This makes up 9–62% of final transport energy use. Only a small amount of bioenergy is projected to be used in transport through electricity and hydrogen pathways, with a larger role for biofuels in road passenger transport than in freight. The association of carbon capture and storage (CCS) with bioenergy technologies (BECCS) is a key determinant in the role of biofuels in transport, because of the competition for biomass feedstock to provide other final energy carriers along with carbon removal. Among models that consider CCS in the biofuel conversion process the average market share of biofuels is 21% in 2100 (ranging from 2 to 44%), compared to 10% (0–30%) for models that do not. Cumulative direct emissions from the transport sector account for half of the emission budget (from 306 to 776 out of 1,000 GtCO2). However, the carbon intensity of transport decreases as much as other energy sectors in 2100 when accounting for process emissions, including carbon removal from BECCS. Lignocellulosic fuels become more attractive for transport decarbonization if BECCS is not feasible for any energy sectors. Since global transport service demand increases and biomass supply is limited, its allocation to and within the transport sector is uncertain and sensitive to assumptions about political as well as technological and socioeconomic factors.

  相似文献   

13.
基于2001-2015年黑龙江省温室气体排放统计核算数据,对地区GDP与温室气体排放的环境库兹涅茨曲线关系检验呈现倒U型,预期2019年达到理论拐点;通过偏最小二乘回归模型得到4个减排路径的年平均减排效果顺序依次为单位GDP化石能源消费量减少、经济结构调整、人均GDP增长、贸易结构变化;减排路径对应脉冲响应函数的动态冲击效果分别为波动性增排、收敛性减排、发散性减排、转变的排放作用;推动黑龙江省温室气体减排的路径顺序为控制化石能源消费量、优化经济结构、发展低碳经济、调整贸易结构。  相似文献   

14.
The number of electric and electronic products (e-products) owned by Chinese households has multiplied in the past decade. In this study, we analyz the GHG emissions from e-products in Chinese households in order to understand and determine how to mitigate their effects on climate change. The results show that the usage stage of e-products has become an important source of GHG emissions in China, with total GHG emissions of these household e-products reaching about 663 million tons CO2 eq., accounting for about 8.85 % of all Chinese GHG emissions in 2012. The average GHG emission per household per year in China was 1538 kg CO2 eq. in 2012, a little higher than that of Norwegian households (1200 kg CO2 eq.). The electricity mix plays a very important role in GHG emissions, and the 78 % coal-fired power consumption accounted for 99.69 % of the total GHG emissions. Our research also supports the view that GHG emissions from household e-products increased with economic level. To reduce the GHG emissions of household e-products, the development of energy-saving e-products and changes to the electricity mix would be very effective measures.  相似文献   

15.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   

16.
2011年以来,我国碳排放权交易市场建设不断加快,碳排放权交易机制不断健全完善,其中基准线法被确定为全国碳交易初始配额分配的主要方法。电解铝行业是我国能源消耗和碳排放的重点部门,尽早将该行业纳入碳市场对于行业减排、纵深推进全国碳市场交易以及应对国际碳边境调节机制政策均有重要意义。基于2018年电解铝行业直报的碳排放相关数据,确定了我国电解铝行业开展全国碳交易的基准线方案。结果显示,电解铝行业宜选取8.12~8.15 t CO2/t铝作为基准线取值,不需设置区域差异调整系数。同时为保证电解铝行业碳交易的顺利开展,还需尽快确定行业配额方案,进一步完善企业排放量的监测、报告和核查以提高核查填报数据质量,以及进一步研究电解铝行业碳排放核算的范围。  相似文献   

17.
In the first Kyoto commitment period Russia could be the major supplier for the greenhouse gases (GHG) emissions market. Potential Russian supply depends on the ability of Russia to keep GHG emissions lower than the Kyoto target. In the literature there is no common understanding of the total trading potential of Russia at the international carbon market. In this paper we focus on CO2 emission, which constituted nearly 80%of Russian GHG emission. We compare different projections of Russian CO2emission and analyze the most important factors, which predetermine the CO2emission growth. In a transition economy these factors are: Gross Domestic Product(GDP) dynamic, changes of GDP structure, innovation activity, transformation of export-import flows and response to the market signals. The input-output macroeconomic model with the two different input-output tables representing old and new production technologies has been applied for the analysis to simulate technological innovations and structural changes in the Russian economy during transition period. The Russian supply at the international GHG market without forest sector may be up to 3 billion metric ton of CO2 equivalent. Earlier actions to reduce CO2 emission are critical to insure theRussiansupply at the international carbon market. With regard to the current status of the Russian capital market, the forward trading with OECD countries is only the possibility to raise initial investments to roll no-regret and low-cost GHG reduction. This paper discusses uncertainties of RussianCO2emission dynamics and analyzes the different incentives to lower the emission pathway.  相似文献   

18.
This paper provides estimates of emissions of two important but often not well-characterized greenhouse gas (GHG) emissions related to transportation energy use: methane (CH4) and nitrous oxide (N2O). The paper focuses on emissions of CH4 and N2O from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions of CH4 and N2O are a function of many complex aspects of combustion dynamics and of the type of emission control systems used. They therefore cannot be derived easily and instead must be determined through the use of published emission factors for each combination of fuel, end-use technology, combustion conditions, and emission control system. Furthermore, emissions of CH4 and N2O may be particularly important with regard to the relative CO2-equivalent GHG emissions of the use of alternative transportation fuels, in comparison with the use of conventional fuels. By analyzing a database of emission estimates, we develop emission factors for N2O and CH4 from conventional vehicles, in order to supplement recent EPA and IPCC estimates, and we estimate relative emissions of N2O and CH4 from different alternative fuel passenger cars, light-duty trucks, and heavy-duty vehicles.  相似文献   

19.
Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology change is important for limiting energy consumption and CO2 emissions, the study also shows that in order to stabilise or even decrease emissions radical changes would be required. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of 200 USD/tCO2 in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for further understanding long-term trends and uncertainty in future transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号