首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用高分辨率的格点降水实况资料,对2019年5月1日—9月30日中国气象局广东快速更新同化数值预报系统(CMA-GD)、中国气象局上海数值预报模式系统(CMA-SH9)和欧洲中期天气预报中心全球模式(ECMWF)的降水预报产品作海南岛晴雨预报的检验评估,结果表明:(1) CMA-SH9具有较高的晴雨准确率及较小的雨区面积偏差。CMA-GD(ECMWF)评分偏低与较高漏(空)报比例有关,漏(空)报易出现在五指山以南和东部沿海一带。三个模式在海南岛东部沿海一带的晴雨准确率随预报时效减小而提高;(2) CMA-GD多漏报,CMA-SH9和ECMWF多空报。CMA-GD和CMA-SH9比ECMWF具有较快速的调整能力,预报时效缩短,雨区面积偏差减小,晴雨评分提高;(3) 降水面积百分比为0~20%、20%~40%、40%~60% 的局地降水事件中,CMAGD和CMA-SH9预报雨区面积偏大,预报时效增加,面积偏差由偏多转偏少;降水面积百分比为60%~80%、80%~100%的降水事件中,雨区面积随时效增加呈增加趋势。(4) CMA-GD对海南岛北部高频降水中心具有较强的预报能力,但易漏报南部高频降水中心。CMA-SH9在海南岛北部易出现高频降水面积偏大,质心偏东的误差,但对南部的高频降水预报能力优于CMA-GD。通过最优面积阈值择优方案迭代集成CMA-GD、CMASH9和ECMWF的降水预报,可有效提高海南岛高分辨率网格晴雨预报准确率。   相似文献   

2.
基于河南省2706个自动气象站降水观测资料及欧洲中期天气预报中心(ECMWF)、中国气象局的中尺度模式预报产品(CMA-MESO)和华东区域气象中心的中尺度模式预报产品(CMA-SH9),从不同量级降水的TS评分和BIAS评分、误差空间分布特征及典型区域预报偏差日变化特征等方面,检验评估了2023年5月25日至6月5日河南省麦收关键期连阴雨过程的数值模式小时降水预报效果。结果表明:ECMWF对Rh(小时降水量)≥0.1 mm/h的预报表现好,CMA-SH9对Rh≥2 mm/h和Rh≥5 mm/h的预报效果较优,CMA-MESO预报性能较差。对于Rh≥2 mm/h, CMA-SH9对上午和夜间的降水预报效果较优,ECMWF对中午到夜里的预报表现好。各模式都表现出在降水量大值区预报偏差大的特点。CMA-SH9对第一阶段的平均有效降水频次预报与实况最为接近,尤其在西部山区;ECMWF则对第二阶段的预报更贴合实况。尽管此次连阴雨过程中各模式小时降水量和小时降水强度的平均值偏差较大,但并没有表现出显著偏强或偏...  相似文献   

3.
以2020-2021年5-10月副高边缘型明显降水过程作为研究对象,针对黄淮地区太行山南麓、伏牛山东麓、东部平原3个典型区域,采用多种检验方法对CMA-MESO,CMA-SH9两模式降水日变化预报性能进行评估。结果表明:在山区,CMA-MESO预报有效降水时次占比与降水强度均偏小,CMA-SH9则相反,两模式分别在伏牛山东麓的04:00-10:00(北京时,下同)和太行山南麓的10:00-16:00预报有效降水时次占比偏小(大)更为显著;在平原,CMA-MESO对03:00-07:00和17:00-20:00有效降水时次占比显著低估,CMA-SH9对于17:00-20:00降水量的高估则主要来源于降水强度预报明显偏大。FSS(fractional skill score)评分结果显示:CMA-MESO对于伏牛山东麓15:00-17:00及21:00-22:00、东部平原02:00-04:00等时段10 mm·h^(-1)以上降水预报能力优于CMA-SH9,在太行山南麓17:00-23:00则相反。基于STFSS(spatial temporal fractional skill score)评分的评估表明:CMA-SH9对于太行山南麓前一日14:00-当日02:00的降水预报较实况显著偏晚,CMA-MESO对于伏牛山东麓02:00-08:00及平原地区08:00-14:00的降水预报均表现出较实况偏早的特征。  相似文献   

4.
利用基于目标诊断的空间检验方法(MODE)和时空检验方法(MTD)评估了华南3 km高分辨率区域数值模式(GRAPES_GZ3 km)对2019年海南岛暖季非台降水预报性能, 结果显示: (1)模式24 h累积降水预报的空间分布范围偏大、降水强度偏强; (2)模式逐小时降水预报的平均质心总体偏西和偏北, 降水出现时间总体偏早1~3 h, 结束时间总体偏晚2~4 h, 降水持续时间偏长; 预报的降水目标数量偏多, 与实况一致均存在着主峰和次峰形态的昼夜分布特征, 但预报的昼间主峰出现时间比实况偏早2 h; 预报的短时强降水出现频次总体偏多。相对于传统的预报和观测点对点检验评估方法, MODE和MTD方法具有捕捉模式预报偏差特征的优势。   相似文献   

5.
曲巧娜  吴炜 《气象》2024,50(4):420-433
预报的稳定性是指对同一时段在不同时间发布的多时效预报结论的一致性,是模式预报质量的一个重要方面,较大的不稳定性会给使用者造成困扰。为深入了解业务常用模式的稳定性,使用相对标准偏差指标计算不同时效预报的降水量波动大小,并改进了Flip-Flop指数(改进后简称FFnorm),计算多时效降水量预报变化趋势的翻转程度,衡量预报变化趋势的稳定性,对2种全球模式(ECMWF、NCEP-GFS)、3种区域模式(CMA-MESO、CMA-SH9、HHUPS-ST),在中国6个气候分区中降水预报的稳定性进行对比分析,分为实况有降水和暴雨及以上降水2种情况进行了讨论。结果表明:实况有降水时,相对区域模式来说,全球模式的多时效降水预报的相对标准偏差较小,即模式降水量预报的波动较小;各模式对西南区的西部、东北区的东部以及华南区的南部预报的波动性相对较小,西北区的西部波动性较大。就多时效降水量预报变化趋势而言,2种情况下均为CMA-MESO、NCEP-GFS和 ECMWF的稳定性较好,其FFnorm指数小于HHUPS-ST和CMA-SH9模式,其中CMA-MESO对西南区、华南部分地区降水量预报变化趋势的稳定性较为突出;CMA-SH9的指数最大,多时效降水量预报变化趋势稳定性较差;各模式对长江中下游地区的FFnorm指数相对较大,多时效预报趋势的稳定性较差。有降水时,CMA-MESO随时效临近的降水量预报变化趋势稳定(单调递增、单调递减或不变)的频次最多,其次是NCEP-GFS,2种降水情况下,该2种模式的降水量预报均为随时效临近单调递增次数大于递减次数,且CMA-MESO单调递增特征尤其显著。以上特征能够为模式调试和预报决策提供参考。  相似文献   

6.
检验梅雨期降水的预报效果,对于提升梅雨期降水预报能力、减少梅雨期降水带来的人员伤亡和经济财产损失有着重要的意义。文章对安徽省2021年梅雨期(6月10日—7月10日)六个客观模式和一个主观订正预报产品进行了检验分析,其中包含了三个区域模式数值预报(中国气象局中尺度天气数值预报系统(简称CMA-MESO)、中国气象局上海数值预报模式系统(简称CMA-SH9)、安徽WRF)、三个全球模式数值预报(中国气象局全球同化预报系统(简称CMA-GFS)、欧洲中期天气预报中心确定性预报模式(简称ECMWF)、美国国家环境预报中心全球预报系统(简称NCEP-GFS))和安徽智能网格主观订正预报的降水产品,进行了检验分析,结果表明:传统检验中安徽智能网格和区域模式对晴雨准确率的预报效果优于全球模式,又以CMA-MESO最优;在暴雨及以上量级的强降水预报中,传统检验表明安徽智能网格预报的得分最高(23.83),ECMWF模式则是客观模式预报中效果最好的(20.12),CMA-SH9次之(19.34);通过对除安徽智能网格以外的各个客观数值模式进行的MODE空间检验可知,不同数值模式间暴雨预报误差原因不尽相同,ECMWF与各区域数值模式主要是由雨区位置的预报偏差,尤其是纬度偏差导致的,NCEP-GFS全球模式对降水强度和雨区面积的预报偏弱偏小比较明显,CMA-GFS在强降水方面的预报可参考性较差;各个主客观预报暴雨及以上量级预报,整体表现出较明显的日变化特征,在午夜前后、上午时段TS评分较高,而午后到傍晚评分较低,这个现象或许是梅雨期的午后降水多以地表太阳加热引起的短历时热对流降水为主造成的。  相似文献   

7.
2021年9月16日预报夜间贵州西部将出现暴雨-大暴雨天气,实况以小到中雨、分散暴雨为主,本文利用常规及加密观测资料、NCEP/NCAR再分析资料、ECMWF、CMA-GD、CMA-SH9等模式预报产品,对这次暴雨空报的原因进行探讨,结果如下:(1)本次暴雨-大暴雨空报的主要原因:副高夜间略北推增强,有利下沉气流增强,阻止切变线南下且消弱低层切变的强度;整体动力条件较差,低层辐合厚度、强度不够,且迅速转为辐散,涡度平流由正转负、上升运动较弱。(2)模式出现较明显误差:ECMWF错误预报副高夜间位置,切变线位置预报也有偏差,CMA-GD模式错误预报切变线位置;5家数值模式预报量级均偏大,其中CMA-GD、CMA-SH9及贵州WRF偏大明显,ECMWF的量级及落区预报和实况更为接近。(3)预报员过度相信ECMWF对切变线的位置预报、过度相信CMA-GD对极端降水的把握,忽视副高略北推增强、动力条件差导致的触发难度迅速加大,主观预报的优势没有发挥出来。  相似文献   

8.
检验梅雨期降水的预报效果,对于提升梅雨期降水预报能力、减少梅雨期降水带来的人员伤亡和经济财产损失有着重要的意义。文章对安徽省2021年梅雨期(6月10日—7月10日)六个客观模式和一个主观订正预报产品进行了检验分析,其中包含了三个区域模式数值预报(中国气象局中尺度天气数值预报系统(简称CMA-MESO)、中国气象局上海数值预报模式系统(简称CMA-SH9)、安徽WRF)、三个全球模式数值预报(中国气象局全球同化预报系统(简称CMA-GFS)、欧洲中期天气预报中心确定性预报模式(简称ECMWF)、美国国家环境预报中心全球预报系统(简称NCEP-GFS))和安徽智能网格主观订正预报的降水产品,进行了检验分析,结果表明:传统检验中安徽智能网格和区域模式对晴雨准确率的预报效果优于全球模式,又以CMA-MESO最优;在暴雨及以上量级的强降水预报中,传统检验表明安徽智能网格预报的得分最高(23.83),ECMWF模式则是客观模式预报中效果最好的(20.12),CMA-SH9次之(19.34);通过对除安徽智能网格以外的各个客观数值模式进行的MODE空间检验可知,不同数值模式间暴雨预报误差原因不尽相同,ECMWF与各区域数值模式主要是由雨区位置的预报偏差,尤其是纬度偏差导致的,NCEP-GFS全球模式对降水强度和雨区面积的预报偏弱偏小比较明显,CMA-GFS在强降水方面的预报可参考性较差;各个主客观预报暴雨及以上量级预报,整体表现出较明显的日变化特征,在午夜前后、上午时段TS评分较高,而午后到傍晚评分较低,这个现象或许是梅雨期的午后降水多以地表太阳加热引起的短历时热对流降水为主造成的。  相似文献   

9.
利用CMA-SH9模式逐小时降水预报数据和地面自动站-CMORPH卫星融合降水数据,开展该模式对2020年暖季(5~9月)川渝地区降水日变化的预报效果评估。结果表明:CMA-SH9模式可以再现小时平均降水量在四川盆地偏小、盆地周边陡峭地形处偏大的空间分布特征;显著的预报正偏差分布于青藏高原东坡至四川盆地西南部一带和四川盆地以东地区,偏差来自降水频率和降水强度的共同贡献;预报负偏差分布于四川盆地,主要来自模式对降水强度的低估;降水日变化峰值时间自西向东呈午夜到上午的滞后,模式预报的降水日变化峰值时间超前于观测;模式能够较好地把握青藏高原东坡至四川盆地西南部一带和四川盆地的单峰型日变化位相,以及盆地以东地区的双峰型日变化位相,但预报的降水量值和观测存在一定偏差。   相似文献   

10.
为提高定量降水预报产品在攀西地区的预报能力,对2021年夏季格点预报(Grid Weather Forecasting,GWF)、西南区域模式(South West Center-WRF ADAS Real-time Modeling System,SWCWARMS)、欧洲中心中期预报 (European Centre for Medium-Range Weather Forecasting,ECMWF)及中国气象局中尺度模式(China Meteorological Administration Meso-Scale Model,CMA-MESO)降水预报情况进行了检验分析。结果表明:(1)ECMWF模式雨日空报最明显,但其暴雨量级预报较实况偏干,其余各家产品中各量级降水均以湿偏差为主。有雨日数在攀西地区南部预报效果较好,其余地方空报较大。大雨日数在凉山州中部预报偏差较大,攀西地区南部预报偏差较小。(2)从16次过程检验来看,各预报产品在8月份过程中的表现优于其余月份,GWF产品25 mm以上TS(Threat Score)评分高于20分的过程次数最多且预报效果最稳定,CMA-MESO模式空报最大。(3)各产品3 h累计强降水开始时间大多早于实况,SWCWARMS模式雨强偏大且对于持续时间较长的过程预报效果较好,而GWF、ECMWF模式累计雨量较实况偏小。   相似文献   

11.
为探讨ECMWF、华东区域中尺度模式(简称为CMA-SH9模式)多个时效对夏季(2019年6—8月)暴雨预报特征,采用目标对象检验方法对不同类型影响系统下模式预报的强降水落区面积、位置、形状等进行评价,并对预报难度较大的受西风槽和西太平洋副热带高压(以下简称副高)边缘切变线影响的高空要素场及环流形势场进行了研究。结果表明:ECMWF和CMA-SH9模式对夏季暴雨预报偏小3个量级次数最多,CMA-SH9模式各时效对暴雨及以上降水预报的准确率大多高于ECMWF;ECMWF和CMA-SH9模式对热带气旋与中纬度系统相互作用的暴雨预报最好,其次是冷涡影响,预报较差的是受西风槽及副高边缘切变线影响的暴雨过程;西风槽及副高边缘切变线影响时ECMWF的位势高度场预报略好于CMA-SH9模式,温度的预报500 hPa以上CMA-SH9模式略好于ECMWF,500 hPa以下二者相差不大,相对湿度的预报CMA-SH9模式误差小于ECMWF,且CMA-SH9模式850 hPa的36 h和60 h时效预报误差最小;受西风槽及副高边缘切变线影响的一次暴雨过程中,相对湿度90%及以上落区的预报ECMWF与实况10 mm·h^(-1)降水落区几乎无交集,CMA-SH9模式的预报包含了10 mm降水落区。  相似文献   

12.
苏翔  刘梅  康志明  李昕 《气象》2022,(3):357-371
基于江苏预报业务常用的三个全球模式(ECMWF、NCEP-GFS、CMA-GFS)、三个区域模式(CMA-MESO、CMA-SH9、PWAFS)、本地客观预报和预报员主观预报,对2020年江苏主汛期(6—9月)中的短期暴雨预报总体性能进行检验,并按降水性质分稳定性暴雨和对流性暴雨分别进行了检验和个例展示.结果表明:从总...  相似文献   

13.
基于精细化预报(GDDZ)和CMA-MESO、西南区域模式(SWC)两家高分辨率模式的小时降水预报,从TS(Threat Score)评分、小时降水频次、小时降水强度、峰值时间等方面,对2021年汛期攀西地区16次降水过程进行小时尺度的检验。结果表明:(1)从逐时降水来看,在晴雨(0.1 mm)TS评分中,GDDZ在00~11时表现较优,CMA-MESO模式在12~23时表现较优;在大雨(7 mm)和暴雨(15 mm)TS评分中,CMA-MESO模式表现较优。(2)从小时降水频次来看,SWC模式预报的降水发生频次空间分布与实况更为接近;从小时降水强度来看,GDDZ预报的降水强度与实况更为接近。(3)从降水量峰值时间来看,GDDZ与实况更为接近;从小时降水强度峰值和降雨频率峰值时间来看,CMA-MESO模式预报与实况更为接近。   相似文献   

14.
为了研究北京快速更新循环同化预报系统(BJ-RUCv2.0)在北京地区降水日变化的预报偏差特征及其成因,利用2012—2015年夏季BJ-RUCv2.0系统第2重区域(3 km分辨率)预报结果和北京地区122个自动气象站逐时观测数据以及观象台探空观测资料,分析模式对北京地区降水日变化预报偏差的区域性特征和传播特征,研究模式局地环流预报偏差特征及其对降水预报偏差的可能反馈机制。研究结果表明,BJ-RUCv2.0系统多个更新循环的预报在北京平原地区均存在夜间降水漏报问题,降水预报偏差表现为模式预报降水在西部山区降水偏多,预报降水雨带难以在平原地区增强发展,造成了模式降水在傍晚山区偏多而夜间平原地区降水明显偏少。通过分析模式局地环流预报偏差及其响应机制发现,由于白天平原地区近地层偏暖偏干,山区底层偏冷中层偏湿,造成了山区-平原地区间的温度梯度强度偏强且强温差出现时间提前,西部山区午后降水偏多;由于平原地区地面气温预报持续偏高,入夜后偏北风难以到达平原地区,造成了山区-平原间的地形辐合线位置偏北,影响山区降水雨带向平原地区移动,同时平原地区近地层内水汽持续偏低,抑制降水雨带在东移过程中的发展,造成模式在平原地区夜间降水预报容易出现漏报。模式冷启动所用的GFS资料土壤湿度在北京平原地区明显小于实际观测,是模式预报偏暖偏干的可能原因之一。  相似文献   

15.
全球海气耦合模式(BCC_CM1.0)对江淮梅雨降水预报的检验   总被引:4,自引:1,他引:3  
司东  丁一汇  柳艳菊 《气象学报》2009,67(6):947-960
以国家气候中心全球大气-海洋耦合模式(BCC-CM1.0)20年的预报产品为基础,重点分析了该模式对中国江淮梅雨的预报能力以及梅雨预报中存在误差的可能原因.试验表明:BCC-CM1.0对江淮梅雨降水有一定的预报能力,模式基本上能够预报出气候态下梅雨降水的空间分布特征.尽管其方差贡献率和时间系数与观测相比有偏差,但模式还是能够预报出梅雨降水的主要模态.气候平均下,BCC-CM1.0模式预报的梅雨雨带位置偏北,因而预报的江淮流域长江以北降水偏多,而长江以南预报的降水偏少.同时发现模式对江淮流域梅雨期中等强度降水预报较好,雨强概率分布与观测结果基本一致,而对大雨强降水和小雨强降水预报相对较差.合成分析发现,江淮流域雨带偏北、降水偏少时,模式的预报能力较好;而江淮流域雨带偏南、降水偏多时,模式预报能力相对较差.BCC-CM1.0对高度场的预报普遍偏低,尤其是在青藏高原上空有一个虚假的低值中心,对副热带高压的预报也偏弱,这样使得东亚季风区气压梯度增加,从而导致预报的东亚夏季风偏强、向北推进的幅度加大,最终致使预报的梅雨雨带偏北.此外,比湿场预报的偏差也可能是造成梅雨雨带偏北的原因之一.  相似文献   

16.
利用1986—2016年中国气象局台风最佳路径资料、海南岛区域站降水数据以及基于拉格朗日方法的轨迹模式对近30 a影响海南岛的台风降水和大气环流特征进行分析,并探讨了台风影响降水期间水汽输送通道和源地。结果表明:6—10月是台风影响海南岛的主要时段,也是台风降水主要时段。在台风降水偏多(少)年,长江以南地区冷空气影响偏弱(强),副热带高压偏弱(强),南支槽偏强(弱),低层水汽通量场呈现异常气旋性(反气旋性)环流。降水偏多年,海南岛受到来自西北太平洋异常东北气流与印度洋、孟加拉湾的异常偏强西南气流影响;降水偏少年,水汽主要来自西太平洋的偏东气流和南海较弱的西南气流。海南岛台风降水的四个主要水汽源地分别为西太平洋、孟加拉湾、南海和印度洋,在台风降水偏多年,水汽输送贡献最大的是西太平洋和孟加拉湾,分别为33%和30%,来自东西两路的水汽供应充足,而在偏少年西太平洋水汽输送贡献最大,为38%,其余水汽源地贡献均在30%以下,以110°E以东的水汽输送为主。  相似文献   

17.
章大全  陈丽娟  柳艳菊  柯宗建 《气象》2018,44(1):189-198
本文回顾了2016年10月降水业务预报中考虑的动力模式预测信息、前兆信号及其影响。2016年10月全国平均降水量为1951年以来历史同期最多,且环流形势和要素分布特征在月内均发生明显转折。业务发布预报在华北南部、黄淮、江淮、江汉等地降水异常与实况存在较大差异,同时对月内环流形势调整及降水变率估计不足。数值模式预报和物理因子诊断预测与实况的对比分析表明,环流形势整体分布特征预报与实况较为一致,但对西太平洋副热带高压等环流因子的强度、西伸脊点位置以及月内变率的预报与实况存在较大差异。从大气对热带海温信号的滞后响应以及同期相关分析表明,El Nino事件次年秋季副热带高压往往持续偏强偏北。10月赤道太平洋东冷西暖,暖池区对流活跃,东亚上空出现的异常经向环流圈通过低层径向风异常及异常辐合辐散,在日本岛附近形成反气旋式环流距平,也有利于副热带高压加强北抬。9、10月热带印度洋偶极子负位相有利于印缅槽加强,从而有利于水汽向我国东部地区输送。来自副热带高压外围的异常东南水汽和来自西南的水汽共同输送到我国中东部地区,并与南下冷空气交汇产生异常水汽辐合,造成这些地区降水明显偏多。此外10月热带对流活动依然活跃,台风的生成、登陆个数均较常年偏多,是我国东南沿海降水偏多的主要原因。  相似文献   

18.
运用气象观测资料和GRAPES、ECMWF、SWCWARMS_9KM(简称SWC)模式预报资料,对冕宁“6.26”大暴雨天气过程模式预报性能进行检验。结果表明:(1)对于24 h累计降水预报,中尺度区域模式优势明显,量级与落区预报效果均为最好,其中GRAPES_3KM模式预报落区分布与实况重合度较高,暴雨及以上量级降水TS评分最高。(2)GRAPES_3KM模式最大小时雨强10 mm以上降水落区与实况大雨及以上量级降水落区匹配度最高,ECMWF模式24 h累计降水多物理量订正产品及短时强降水概率产品次之。(3)SWC及GRAPES_3KM模式24 h累计降水极值点相比实况略偏北,量级偏小。对于小时降水峰值出现时间,SWC模式偏早4 h,GRAPES_3KM模式偏早3 h。(4)GRAPES_GFS模式环流背景预报更接近实况,SWC模式能较好地预报出冕宁上空中尺度辐合系统的存在。   相似文献   

19.
为进一步了解各家模式在龙舟水期间的预报效果,对全球模式ECMWF、NCEP以及区域模式CMA-GD、CMA-TRAMS在龙舟水期间的降水要素预报进行了检验,结果表明:(1)对于小雨以上量级降水,全球和区域模式TS评分接近,但全球模式的空报率偏高;对于中雨以上量级降水,全球模式TS评分高于区域模式(ECMWF最优);对于大雨以上和暴雨以上量级降水,区域模式TS评分明显高于全球模式(CMA-GD最优),而全球模式的漏报率明显偏高。(2)各家模式对于不同区域的降水(以大雨以上降水为例)预报表现不尽相同:NCEP对粤东(潮州除外)市县的预报明显优于其他模式;区域模式对西北部和粤西市县的预报整体优于全球模式;对珠江三角洲和东北部市县的预报,CMA-GD表现最优。  相似文献   

20.
利用海南岛18个市县国家气象观测站月降水资料、NCEP\NCAR的逐月资料、美国NOAA中心OISST1的海温逐月资料,研究了海南岛春季降水变化及降水异常的大气环流变化特征,结果表明:海南岛春季降水量较大的地区为东北部到中部地区。春季降水量的特征时间尺度分别为2和6年。降水偏多(或偏少)年,高层位势高度呈现北高(或低)南低(或高)的分布状态,中层贝加尔湖和巴尔喀什湖之间高压脊偏强(或偏弱),东亚大槽偏强(或偏弱)、偏南(或偏北),副高偏弱(或偏强)、偏南(或偏北),有利于(或不利于)北方冷空气南下扩散到华南地区,中南半岛到南海中北部低压(或高压)异常。降水偏多年,西南风携带大量水汽经孟加拉湾南部、中南半岛南部进入南海后与冷空气汇合;降水偏少年,冷空气活动偏北,西南风偏弱。当赤道附近的中东太平洋海区的海温异常偏低、30N°附近的北太平洋海区和我国的黄海、东海附近海区的海温异常偏高时,有利于春季降水,反之则不利于春季降水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号