首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用短时强降水概率预报模型生成短时强降水(≥20mm/h)概率预报产品,并对其进行“点对面”模糊检验试验。结果表明:短时强降水(≥20mm/h)概率预报和SWC_WARMS模式最大小时雨量(≥20mm/h)的“点对面”TS评分均明显高于相应的“点对点”评分,短时强降水(≥20mm/h)预报结果可在30~40km范围内进行调整;短时强降水(≥20mm/h)概率预报在概率为30%时TS评分达到最大,Bias接近为1,预报偏差最小;短时强降水(≥20mm/h)概率预报比SWC_WARMS模式最大小时雨量(≥20mm/h)预报更具有参考价值。   相似文献   

2.
钟敏  肖安  许冠宇 《干旱气象》2022,(4):700-709
随着预报服务需求不断增长和预报内容日趋精细化,仅针对20 mm·h^(-1)以上的短时强降水预报已不能完全满足业务需要,开展不同雨强等级的短时强降水预报方法研究显得十分必要。利用2016—2019年6—8月中国南方9省1市的国家及区域气象站共51355站次短时强降水样本,将雨强R分为4个等级:20≤R<30 mm·h^(-1)、30≤R<50 mm·h^(-1)、50≤R<80 mm·h^(-1)及R≥80 mm·h^(-1)(分别对应I、Ⅱ、Ⅲ、IV级)。将各级样本与同时段CMA-MESO(China Meteorological Administration mesoscale model)数值预报模式初始场进行时空匹配,提取22个相关物理量建立数据集并进行百分位值统计;利用XG⁃Boost(extreme gradient boosting)机器学习方法对物理量进行重要性排序以确定权重系数;应用连续概率预报方法,选用升、降半岭函数作为隶属函数,建立不同等级短时强降水概率预报模型。运用该模型在2020年汛期进行实时业务预报,并对湖北省2020年6—8月15次大暴雨过程0~36 h预报时效的逐小时不同等级短时强降水概率预报产品进行检验,结果表明:I级概率预报产品60%阈值的TS评分(0.145)最好,对应命中率为55.7%;Ⅱ级概率预报产品65%阈值的TS评分(0.083)最好,对应命中率为39.1%;Ⅲ级概率预报产品70%阈值的TS评分(0.03)最好,对应命中率为21.7%;IV级概率预报产品80%阈值的TS评分(0.005)最好,对应命中率为5.8%。对不同等级雨强个例对比检验表明,各级概率预报产品对CMA-MESO模式在同时次不同等级短时强降水预报上均有较好的订正作用。对3次强降水过程逐小时预报检验表明,I级概率预报产品命中率为40%~80%,空报率为50%~90%,预报时效达36 h,普遍优于同时次CMA-MESO降水量预报。本研究对不同等级短时强降水分型建模并在实际预报中有较好的参考性,能够对CMA-MESO的降水预报起到订正作用。  相似文献   

3.
张武龙  康岚  周威  银航 《干旱气象》2021,39(3):507-513
利用2017—2018年5—9月四川盆地109个自动站逐小时降水资料,以及GRAPES-MESO模式0.1°×0.1°的逐3 h预报场资料,从热力不稳定、水汽、动力条件等方面分析极端短时强降水(1 h降水量大于等于50 mm)发生发展所需的关键物理量指标,结合随机事件概率思想和主成分分析方法构建预报模型,研发极端短时强降水概率预报产品。经预报效果评估,当概率值达0.7以上时,TS评分为24.0%,可将其作为极端短时强降水预报的参考阈值。2019年7月22日四川盆地暴雨过程应用表明,该产品对极端短时强降水落区有较好的参考意义。  相似文献   

4.
利用1985-2018年汛期(5-9月)豫东地区20个国家站小时降水资料和2011-2018年同期豫东地区区域自动站观测数据、NCEP(1°×1°)再分析资料、高空地面观测资料等,统计分析了该区域小时雨强分别≥20mm/h、≥30mm/h和≥50mm/h的短时强降水时空分布特征,结果发现:豫东地区近34年汛期平均年降水量为458.9~577.5 mm/a,短时强降水次数为72.8次/a;2000年是短时强降水多发年份,≥20mm/h的雨强出现158次,是常年平均次数的1.17倍;主汛期的7-8月是不同强度短时强降水多发时期,34年来共计发生≥20mm/h的短时强降水1821次,占同强度短时强降水总次数(2476次)的近74.0%;在短时强降水的日变化中,05时是不同强度短时强降水多发时段,20时为次多发时段。对不同环流背景影响下短时强降水过程的水汽、动力、热力及能量等物理量作统计分析,低槽型短时强降水过程的动力条件优于其他两个类型的,850hPa涡度平均值达3.8×10~(-5)s~(-1),700hPa垂直速度平均值达-0.36 Pa·s~(-1);副高边缘型短时强降水过程不稳定能量条件优势显著,850hPa假相当位温平均值达354.1 K,500-850hPa假相当位温差的平均值达-17.80℃,K指数平均值为38.1℃、CAPE值平均值为2075.0 J·kg~(-1);而台风倒槽型短时强降水过程则在水汽输送方面更具优势,850 hPa比湿平均值为15.5g·kg~(-1),整层可降水量达70.0 mm。  相似文献   

5.
基于我国中东部2002—2009年5—9月逐小时降水观测资料和一天四次的NCEP最终分析资料,通过时空匹配处理,得到强度为20~49.9 mm·h-1(A类)、50~79.9 mm·h-1(B类)和不小于80 mm·h-1(C类)的短时强降水天气样本序列,逐类统计分析用于表征其发生发展环境条件的水汽、热力、抬升触发和垂直风切变等物理量的分布特征。结果表明:表征水汽条件的大气可降水量(TPW)对三类短时强降水有一定的指示意义,A、B、C类短时强降水必要的TPW值分别为27、32、42 mm,短时强降水量越大,其所需水汽含量越高。约50%的三类短时强降水均出现在TPW大于60 mm的湿环境中。表征热力、能量、动力和垂直风切变条件的物理量对三类短时强降水的环境条件区分并不显著,环境大气中水汽多少可能是决定短时强降水级别的必要因素。B类和C类短时强降水的高概率密度区域范围大致为TPW在55~70 mm之间、0—6 km垂直风切变在5~15 m·s-1之间,而C类短时强降水在TPW与最佳对流有效位能(BCAPE)以及0—6 km垂直风切变与BCAPE的概率密度分布图中均有两个显著高概率密度区,可能与CAPE影响高级别短时强降水产生的两种机制有关。  相似文献   

6.
利用ECMWF预报资料,从动力、热力、水汽、能量和降水预报5个方面选取影响短时强降水发生的因子,构建多因变量数组,并利用主成分分析确定配料系数及其阈值,在此基础上进行配料,研发了四川省短时强降水概率预报产品投入应用。结果表明:产品对盆地20mm/h以上和高原地区10mm/h以上的短时强降水落区预报效果显著。   相似文献   

7.
2012年江西宜春四类短时强降水特征分析   总被引:6,自引:3,他引:3  
用宜春气象站常规气象资料,雷达回波和风廓线雷达等资料,采用数理统计、样本对比和特征分析等方法,对2012年3—9月宜春单站短时强降水天气进行分析和研究。结果表明:(1)≥10 mm·10min-1的超短时强降水是构成≥30 mm·h-1和≥50 mm·(2h)-1短时强降水的重要组成部分。(2)宜春短时强降水主要有带状回波、块状回波、絮状回波和短带回波4种类型,是由平均50 d Bz的强回波单体所致。(3)短时强降水回波系统过境时,平均回波宽度43 km,气象要素表现为:出现超短时强降水、温度下降、湿度饱和、气压上升、前导风迅速加大、Cb云急增。(4)短时强降水发生时,宜春风廓线雷达最大探测高度由3 000 m逐步增高到6 000 m,风速加大;850 h Pa西南急流≥12 m·s-1。(5)降水期间由于强降水粒子拖曳作用,风廓线雷达垂直波束上径向速度出现朝向雷达方向的正速度,垂直风速明显加大,噪声系数在40~60 d B之间。  相似文献   

8.
常煜  樊斌  张小东 《气象科学》2018,38(2):229-236
利用1991—2015年夏季(6—8月)内蒙古地区111个国家气象站小时降水量资料,对内蒙古不同气候区(极干旱、干旱、半干旱、半湿润和湿润)短时强降水(1 h降水量≥20 mm)进行检验分析,采用累积概率方法定义内蒙古夏季不同气候区短时强降水。检验结果表明:内蒙古地区年平均降水量和小时降水量极值自西部极干旱区向东部半湿润、湿润区递增,高值区位于大兴安岭东部,次高值区位于阴山山脉以南。内蒙古极干旱区小时降水量极值低于20 mm,半湿润区和湿润区小时降水量极值高于50 mm,个别站点甚至达到100 mm以上。但在半湿润区和湿润区东部小时降水量超过20 mm年平均发生仅为1次,其余地区均1次。在内蒙古极干旱区、干旱区、半干旱区、半湿润区和湿润区小时降水量分别达到6.1、9.8、12.5、15.2和14.3 mm·h~(-1)属于极端降水事件,小时降水量≥20 mm不宜作为内蒙古短时强降水定义。综合上述研究,结合内蒙古地区地形、地貌等因素,将内蒙古极干旱区和干旱区短时强降水定义为5 mm·h~(-1),半干旱区、半湿润区和湿润区短时强降水定义为10 mm·h~(-1)。  相似文献   

9.
利用云南省普洱市2015—2017年多普勒天气雷达资料、探空资料和气象观测站5 min雨量观测资料,分析了普洱地区研究期间41次短时强降水的环境场和雷达回波演变特征。结果表明:中尺度辐合线、中气旋、逆风区是强降水触发和维持的重要成因。短时强降水发生前,整层大气水汽充沛,静力不稳定层结,大气可降水量(PW)≥35 mm、SI≤-0. 23、K> 35,可作为环境场对流潜势的判定因子;短时强降水发生时,雷达回波最强反射率因子≥40 d Bz,35 d Bz回波顶高> 5 km,径向速度的辐合切变量> 5 m·s-1。通过多元线性回归分析,选取4个相关性显著的影响因子,建立普洱市短时强降水预报模型。所选预报因子包括:35 d Bz回波顶高、30 d Bz垂直剖面中心高度、30 d Bz以上雷达回波面积和SI。预报模型的回报检验表明,普洱短时强降水平均雨强相对均方根误差为17. 0%,局地降水持续时间相对均方根误差为33. 9%,局地过程降水相对均方根误差为25. 6%,回报效果较好。4次短时强降水预报检验中,平均雨强的预报误差每5 min小于1. 2 mm,局地强降水持续时间的预报误差小于10 min,局地过程降水的预报误差小于4 mm,模型均预报出局地连续性降水超过50 mm。预报模型有较好的预报能力,可应用于普洱短时强降水的临近预报预警。  相似文献   

10.
利用伊犁河谷2010~2018年6~8月68个短时强降水天气过程样本,采用箱线图的形式讨论产生短时强降水的关键环境参数的阈值,并对短时强降水天气过程的关键环境参数月特征进行了讨论,最后对2019所夏季的短时强降水天气过程进行检验。结果表明:(1)K指数、修正K指数、瑞士第二雷暴指数、对流凝结高度、Teffer指数、大风指数、对流温度、对流凝结高度处温度、总指数、整层比湿积分与产生降水的相关系数达到0.30以上,对降水有较好的指示意义,其中整层比湿积分的相关系数最高,达到0.465。(2)17个物理量参数涵盖75%以上降水天气过程的阈值在无降水天气过程中的概率,Charbr修正K指数(ChTTK)指示意义最好,概率只有16.8%,而干暖盖指数(Ls)、特征层高度中的对流凝结高度到50%以上,对出现降水的指示性较差。最终选取Charbr修正K指数、K指数、mK指数、Teffer指数、瑞士第二雷暴指数、整层比湿积分这6个关键环境参数。(3)6个环境参数的阈值落在降水天气过程的概率都小于25%,瑞士第二雷暴指数指示意义最好,仅为10.7%。(4)6月份的mK指数、K指数、Charba修正K指数的阈值分别为32、38和36℃;7月份的mK指数、K指数、Charba修正K指数的阈值分别为31、37和35℃;8月份的mK指数、K指数、Charba修正K指数的阈值分别为32、38和37℃。6、7、8月份Teffer指数产生短时强降水的阈值,分别为43、47和43℃。瑞士第二雷暴指数(SWISS12)6、7、8月份的阈值分别为3.4、4.3、3.6。整层比湿积分6、7、8月的阈值,分别为2320 g.kg-1,2390 g.kg-1、2392 g.kg-1。(5)对2019年6-8月的降水天气过程及短时强降水天气过程进行检验评估,降水预报正确的样本为43个,漏报为41个,空报7个。准确率为(Ts)47.3%。短时强降水样本的检验,漏报率6、7、8三个月都为50%,空报率7月份最高,为71.4%,而8月份没有空报。准确率(Ts)是8月份最高(50%),6月份次之(33.3%),7月份最低(20%)。  相似文献   

11.
利用深圳市城市气象探测网110个自动站5年每分钟的观测资料,对深圳市短时强降水(20 mm/h)的气候特征进行了系统的分析。在平均200 km2的预报单元上,要定时、定点、定量地预报短时强降水等小概率事件,目前的预报能力是有限的,如果严格按TS标准评分,第1小时的准确率在10%以下。按照TS评分的基本思路,以人口密度为权重,从公众亲历事件的角度,提出一套相对准确率的定量计算方法,按此方法 2013年深圳市全年短时强降水预报质量第1小时的相对预报准确率为41.6%、第2小时为15.2%、第3小时为8.2%,亦即第1小时的预报具有实用价值,第2小时的预报可供参考,第3小时以上的预报有待今后预报系统的不断总结、完善和提高。  相似文献   

12.
西南地区短时强降水的气候特征分析   总被引:5,自引:2,他引:3  
毛冬艳  曹艳察  朱文剑  田付友  郝丽萍  康岚  张涛 《气象》2018,44(8):1042-1050
利用国家级地面气象站逐小时和日降水数据集资料,对西南地区短时强降水的气候特征进行了分析,并对近30年来强短时强降水和强暴雨的变化趋势进行了分析。结果表明:西南地区短时强降水主要集中在4-10月;三个高发区分别位于贵州东南部、四川盆地西南部和云南东南部,年均发生次数约5~6次;强度一般为20~30 mm·h~(-1),其中贵州30 mm·h~(-1)以上的小时降水强度所占比例最高,四川盆地西部边缘地区小时降水最强,超过80 mm·h~(-1),极端小时降水达123.1 mm·h~(-1);短时强降水具有明显的夜发性,02时左右为发生频次的峰值时段。从近30年西南地区超过第90百分位的强短时强降水与强暴雨的长期变化趋势来看,强短时强降水呈现频次增加、强度增强的变化趋势,强暴雨则变化不明显。  相似文献   

13.
利用台风路径资料及GPM多星集合降水反演产品(IMERG),分析了“利奇马”台风快速增强(RI)事件的平均降水率、降水(>0 mm·h^-1)和短时强降水(>20 mm·h^-1)的覆盖率随时间的演变。进一步,将RI事件分为RI启动前0~24 h、RI启动期、RI持续期、RI结束前0~24 h,和RI结束后0~24 h等阶段,分析平均降水率、降水和短时强降水发生频率的空间分布。研究结果表明:(1)在整个RI事件中,平均降水率和短时强降水发生频率较高的区域主要集中在台风中心西北方位,但其面积和位置随阶段转换而变化;(2)在RI启动前0~24 h,降水覆盖率的高值区由台风内核逐渐扩大至台风外围,而平均降水率和短时强降水覆盖率在RI启动后才明显增强;(3)在RI启动前0~12 h到RI结束前0~24 h的4个阶段,平均降水率和短时强降水发生频率的高值区都出现在台风移动方向的正前方。  相似文献   

14.
为提高对中小河流强降水引发山洪的预报预警能力,尽可能减少山洪灾害造成的人民生命财产损失,基于伊春市近10 a(2011-2020年)中小河流山洪灾害和对应的暴雨、短时强降水资料,分析了暴雨和短时强降水发生时的天气形势,统计了易发山洪的降水面雨量阈值。结果表明:伊春市暴雨和短时强降水发生时的天气形势主要为副高北抬阻挡低涡东移型、高空槽配合地面低压型和低涡配合地面低压型。通过雨量统计,得出6-8月易发山洪的降水面雨量阈值,6月份,同一区域48 h累计雨量达到85 mm,降水期间部分时段有短时强降水,小时雨强达到20 mm/h,并连续出现2-3 h;7月份,同一区域48 h累计雨量达到90 mm,或局地小时雨强超过30 mm/h;8月份,同一区域48 h累计雨量达到110 mm,或局地小时雨强达到30 mm/h。基于研究结果,建立了伊春市山洪预警流程。  相似文献   

15.
利用浙江省2012—2016年6—9月自动气象观测站逐日逐小时资料,分析了浙江省午后短时强降水时空分布特征,基于NCEP全球再分析资料探讨了此类天气发生的环流背景,统计分析其中6个具有地域代表性的高概率发生站点的物理量统计特征。结果表明:浙江北部的杭州和宁波城区、浙江中部和南部的高海拔山区都是午后短时强降水发生概率相对高的区域,浙江东部沿海、金衢盆地以及千岛湖概率较低。6—9月浙江省各月午后短时强降水触发条件有所不同,7、8月短时强降水相对多发,均具有明显的热对流性质,同时边界层的弱辐合、城市热岛效应和山区地形作用对短时强降水落区均有影响。午后短时强降水发生前,平原地区所需要的层结不稳定度以及水汽条件较山区为高,并且低层还需要一定的垂直风切变维持。统计表明:午后短时强降水发生前6 h的CAPE值多数个例有较大的增量,而抬升指数等表征大气不稳定程度和水汽的指标虽无明显变化,但均向利于短时强降水发生的方向发展。  相似文献   

16.
《气象》2021,(5)
利用2018年4—8月格点降水分析资料和4个业务高分辨率区域模式降水预报资料,应用分位数频率匹配法对模式1 h降水预报分别订正;基于上游关键区域的检验结果,采用动态权重多模式集成技术,探讨了多模式集成技术在短时强降水概率预报中的应用前景。结果表明:分位数频率匹配法对强降水预报改进具有正效果,可以减少模式的系统性偏差,提高模式降水预报的准确率。在短时临近时效内,上游关键区域降水信息对下游地区降水预报具有指示意义,基于上游关键区实况检验的动态权重多模式降水概率预报较简单集成概率具有更高的预报准确率,预报效果也更为稳定。个例分析也表明该技术对短时临近时效内的短时强降水预报预警有较好的指导作用。  相似文献   

17.
对乌东德水电站开建以来坝区暴雨及伴随的短时强降水时空分布进行统计研究,并划分出暴雨天气概念模型。结果表明:乌东德水电站开建以来坝区共出现18个暴雨日,平均3.0个/a,暴雨自6月上旬开始出现,到10月上旬结束,出现暴雨最多的季节是夏季,多为范围小的局地性暴雨出现。暴雨日数、年平均降水量、20~30mm h-1及≥20mm h-1的短时强降水的空间分布均呈现“西北多东南少”的特征。20~30mm h-1的短时强降水发生频次最多(占63.6%),其次为30~40mmh-1(占27.3%),40~50mm h-1最少(仅占9.1%)。短时强降水及不同等级短时强降水均表现为夜间高发、白天低发的日变化特征。总结归纳出切变冷锋型8次(占44.4%)、两高辐合型4次(占22.2%)、西南涡型2次(占11.1%)、孟加拉湾风暴型2次(占11.1%)、切变线型1次(占5.6%)和高空槽型1次(占5.6%)六类暴雨天气概念模型。   相似文献   

18.
基于临夏州2006—2018年4—9月自动气象站逐日小时降水量,在传统降水百分位法、Z指数法和平方根变换法3种方法中,确定了短时强降水阈值的最佳计算方法,在此基础上分析临夏州短时强降水的时空分布特征。平方根变换法确定的临夏州短时强降水阈值为14.6 mm·h^(-1)。临夏州短时强降水空间分布表现为自中南部分别向西北和东南减少,短时强降水年平均出现次数为7.3次,2018年出现次数最多;7—8月短时强降水出现频次最多,占短时强降水总频次的81.1%,8月达到最高峰,占总频次的55.8%;短时强降水日变化呈4峰分布,短时强降水主要出现在18:00—23:00,占短时强降水总频次的55.8%;小时最大降水量为55.8 mm,出现在22:00;短时强降水持续时间为1 h的占90.5%,同一时次出现1站次短时强降水的占93.3%,临夏州短时强降水多为阵发性,且空间分布多为孤立零散。  相似文献   

19.
为了更好的提高成都地区(30.1°N-31.5°N,103°E-104.9°E)强降水的预报准确率,利用国家气象中心(T639)高分辨预报场(0.28°×0.28°)资料以及加密自动站降水量资料对成都地区2011-2012年汛期(7-9月)共计15例强降水个例进行湿螺旋度指标的统计分析,分别归纳总结出3 h、24 h内强降水发生、发展及落区分布的判据。利用这些判据对2013年6月20日以及7月8日发生在成都地区的两例强降水过程进行检验,同时根据这些判据对成都2013年6-8月强降水过程进行检验评分并投入业务试应用。结果表明,低层湿螺旋度对成都区域性暴雨的预报准确率较高。700 h Pa和850h Pa湿螺旋度正值区的分布对强降水落区分布有较好的预报效果,强降水出现在700 h Pa湿螺旋度正、负值等值线密集区(靠近正值一侧),以及850 h Pa正值区;当700 h Pa连续5~8个3 h维持在20×10-11~80×10-11Pa·s-3湿螺旋度时,出现区域性暴雨天气;当700 h Pa连续5~8个3 h维持在20×10-11~140×10-11Pa·s-3湿螺旋度时,出现区域性大暴雨天气;当不同层次上出现300×10-11~500×10-11Pa·s-3时,可能出现局地强对流天气,如大风、短时强降水等。  相似文献   

20.
田付友  郑永光  毛冬艳  谌芸  钟水新 《气象》2014,40(7):787-795
我国暖季小时降水的气候概率分布特征分析是开展短时强降水概率预报的重要基础工作。本文使用1991—2009年5月1日至9月30日的小时降水资料,采用最大似然估计方法,对用于描述518个观测站点降水分布的Γ函数的形状参数α和尺度参数β进行了估算,对极端α和β分布情况下大于0.1 mm的暖季小时降水的概率密度分布状况及其累积概率密度分布函数进行了分析,并给出了多个站点基于Γ函数的超过给定阈值的降水累积概率的分布。结果表明:α和β之间的相关性高达0.975,其分布与我国的地势分布有很大的关系。Γ分布可以很好地描述小时降水的分布状况,模拟得到的结果具有更好的连续性,揭示了实况降水中不能观测到的极端降水发生的可能性;华南沿海和海南西北部为最容易出现短时强降水的区域,在有降水的情况下,其小时雨量超过10、20和30 mm的累积概率分别达到了8.0%、2.0%和0.7%,另一个常出现极端降水的区域为鲁苏皖交界处,这是强对流预报中值得注意的区域;95%累积概率密度对应的小时降水阈值分布显示,自西北向东南,极端小时降水的阈值不断增大;α与站点海拔高度之间具有很好的指数相关性,其相关系数达到了0.709,表明地形对我国暖季小时降水量的分布具有重要的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号