首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
云特征参数与降水相关性的研究   总被引:3,自引:0,他引:3  
利用FY2C卫星和探空反演得到的云结构特征参数,结合地面降水,研究了云顶高度、光学厚度、云粒子有效半径和云厚度等云结构参数与降水的关系,并分类研究了层状云和对流云在不同降水强度情况下,云参数的频数分布规律及其与降水的关系。结果表明:通常云厚大于5km、云底较低、云粒子有效半径较大时,地面易出现降水,若云顶高于10km、云光学厚度大于20且云中无夹层或夹层稀薄时,地面雨强多大于1mm/h;对于层状云降水,当云光学厚度大于17时,地面出现降水的概率较大,随光学厚度值增加,地面雨强呈增大趋势;对于对流云降水,云顶高度和光学厚度相关性较好,云光学厚度大于17且云顶高于7km时,地面出现降水的概率较大,当光学厚度大于20时,地面雨强明显增大;层状云和对流云的降水概率均随云顶高度和光学厚度的增加而增大,降水概率与云光学厚度的相关性更为密切,光学厚度小于10的云很难产生降水,而云光学厚度大于20时,层状云和对流云的降水概率都会显著增加;综合云体的高度、厚度和云光学厚度等云参量的组合特征,对分析判断地面降水落区和降水强度更加有效。  相似文献   

2.
利用河北省、河南省和山西省2013—2014年的每日10—15时逐时FY2E卫星反演得到的云结构特征参数和地面小时降水,统计分析了云顶高度、云顶温度、云光学厚度和云粒子有效半径等4类云结构特征参数与地面降水的关系。主要结论有:随着云光学厚度的增加,降水概率呈增加趋势。云光学厚度比其他云参数对降水更具有指示意义,当云光学厚度大于20时,降水概率显著增大。双参数、多参数组合下,对地面是否出现降水的判断和识别要优于单个云参数的判别结果。4类云参数中,云光学厚度与降水强度呈正相关关系,对降水强度的影响最为显著;云顶温度和云顶高度对降水强度的影响次之;云粒子有效半径与降水强度的关系不明显。地面降水时,当云光学厚度小于20或云光学厚度介于21—30、云顶温度大于-15℃时,出现小雨的概率最大;当云光学厚度介于21—30、云顶温度小于-15℃或云光学厚度大于30、云顶温度大于-30℃时,出现中雨的概率最大;当云光学厚度大于30、云顶温度小于-30℃时,出现大雨或暴雨的可能性最大。云光学厚度、云顶温度、云顶高度和云粒子有效半径等云结构特征参数组合使用,对判断降水概率和降水强度具有较好的指示作用。  相似文献   

3.
基于Cloudsat的降水云和非降水云垂直特征   总被引:5,自引:1,他引:4       下载免费PDF全文
降水云是人工增雨作业的主要对象,了解降水云系的垂直结构对于人工增雨可播条件的选择至关重要。利用Cloudsat卫星2008年3月—2009年2月资料,首先通过大量个例分析并结合地面降水量观测验证Cloudsat卫星识别降水云方法的合理性,在此基础上,统计分析了华北和江淮地区降水云与非降水云的垂直结构特征。统计结果表明:降水云与非降水云垂直结构存在明显差异, 两地区降水云云底高度都在2 km以下,非降水云的云底高度以高于2 km为主。两地区单层降水云云厚以大于6 km为主,多层降水云云厚以2~4 km为主,非降水云云厚以小于2 km为主。两地区降水云夹层厚度集中于1~2 km,非降水云夹层厚度集中在4 km以上。江淮地区多层云降水频率略高于华北地区。  相似文献   

4.
利用青海省东部地区2018年7—9月、2019年4—9月、2020年4—7月FY-2G卫星反演的云特征参量及地面小时降水数据,分析了云顶高度、云顶温度、云光学厚度和云粒子有效半径4种云特征参量对降水频率及降水强度的指示性。结果表明:(1)单云特征参量中,云光学厚度对降水频率指示性最强。中雨、大雨频率分别随云顶温度下降、云顶高度及云光学厚度增加呈明显增加趋势,而小雨频率随之呈减小趋势。(2)双云特征参量(云光学厚度和云顶温度)对降水频率指示性优于单云特征参量,降水频率随云光学厚度增加及云顶温度下降而增大。当云光学厚度为21~30且云顶温度大于0℃时,小雨频率最大。云光学厚度大于40且云顶温度为-45~-31℃时,中雨频率最大。云光学厚度大于40且云顶温度小于-45℃时,大雨频率最大。(3)三云特征参量(云顶温度、云光学厚度和云粒子有效半径)对降水频率指示性优于单云特征参量,但比双云特征参量降水频率指示性弱。  相似文献   

5.
利用CloudSat卫星资料分析云微物理和光学性质的分布特征   总被引:3,自引:0,他引:3  
利用2007年1月2010年12月高垂直分辨率CloudSat卫星的2B数据产品,对云微物理特征量(包括云中液态水/冰水含量、液态水/冰水路径、云滴有效半径等)以及云光学参数(云光学厚度等)的全球分布和季节变化进行了统计分析,并研究了云微物理性质对光学性质的影响。结果表明,冰水路径分布在北美南部、南美大陆、非洲大陆、澳大利亚和南亚的陆地上空,以及太平洋、大西洋和印度洋的洋面上空,高值区最大值达600 g·m-2以上;垂直方向上,高值区位于赤道地区8 km附近以及中纬度地区4~8 km高度上。液态水路径在300 g·m-2以上的高值区主要位于太平洋、印度洋和大西洋的中低纬度海域上空,垂直上液态水含量随高度递减。冰云有效半径在高纬度地区近地面层达200μm以上,在赤道附近4~8 km上有1个高值区,南北半球中纬度地区2~4 km上有2个高值区,最大值均达到80μm以上。在1 km以下的边界层水云有效半径值较大,达到12μm以上。总云光学厚度在全球大部分地区40,高值区普遍位于中高纬度的广阔地区和低纬度靠近大陆的洋面上空;垂直方向上,云光学厚度的高值集中在2 km以下的边界层。云光学厚度的分布受云量、云水含量和云滴有效半径的影响,云量大的地区基本为云光学厚度的大值区。  相似文献   

6.
利用中国气象局人工影响天气中心研发的云参数卫星反演系统反演得到的产品,结合地面自动站观测资料,对2009年9月19—20日降水过程的云参数及地面雨量进行对比分析。结果发现:云顶高度、云顶温度、过冷层厚度和云光学厚度对本次降水过程指示性不强,而云粒子有效半径及云液水路径对降水有较好的指示作用,且云液水路径指示作用更强,二者的变化超前于地面降水30min到1h;云液水路径及云粒子有效半径大值区与地面雨量的大小呈正相关,云液水路径值大于400g.m-2及云粒子有效半径大于27μm区域与地面雨强中心位置基本一致。掌握云参数的演变规律,有助于监测、识别大范围人工影响天气作业条件和分析可播区。  相似文献   

7.
FY2C/D卫星反演云特性参数与地面雨滴谱降水观测初步分析   总被引:2,自引:1,他引:1  
针对2008年4月11-12日一次北方层状云降水过程,将FY2C/D静止卫星反演的云参数和地面同时段的雨滴谱仪的观测资料进行联合分析,发现反演得到的一些特征云参数对地面降水有一定的指示意义:一般降水发生前,云系发展,云顶抬升,云顶温度和云黑体亮温都降低,云光学厚度增大,云参数先于地面降水变化,两者大概相差2小时。其中,云光学厚度与地面降水量和降水粒子数关系密切,其相关性比云顶高度、云顶温度和云黑体亮温的相关性都好;一般地面降水强,光学厚度一定大,若云层光学厚度较小,即便云顶发展得很高,地面几乎无降水或降水较小,但云光学厚度大时,地面降水强度并不一定都大,可能降水粒子数浓度大,地面多降毛毛雨。  相似文献   

8.
利用2011—2020年ERA5再分析降水资料、CERES云物理参数产品,分析新疆云参数的时空变化分布特征,归纳总结云物理参数与降水的相关性,结果表明:1)云水路径(冰相)值、云粒子有效半径(冰相)、云光学厚度与降水量的空间分布一致,均为山区最大,北疆次之,南疆最小。2)夏季(6—8月)在南、北疆、山区云水路径(液、冰相)、云顶(底)温度、云光学厚度与降水量呈同位相变化;云粒子有效半径(液、冰相)、云顶气压与降水量呈反位相变化。3)夏季(6—8月)北疆、山区的云水路径(液、冰相)值、云顶(底)温度、云光学厚度,南疆云光学厚度与降水量呈正相关;北疆云粒子有效半径(冰相),南疆云粒子有效半径(液相)、云顶气压,山区云粒子有效半径(液、冰相)、云顶气压与降水量呈负相关。  相似文献   

9.
一次对流云团合并的卫星等综合观测分析   总被引:3,自引:2,他引:1  
利用FY2C卫星观测反演得到的云物理特征参数,结合雷达、微波辐射计和地面雨量等资料,综合分析了2008年7月17日中国安徽一次强降水过程的云合并特征。结果表明:对流云团发展合并是这次强降水发生的主要原因,同一区域内FY2C卫星反演的云光学厚度、雷达回波以及地面降水的分布演变具有较好的一致性,强降水落区与云光学厚度大值区以及雷达强回波区基本对应;对流云团中的液水分布不均匀,以团块状结构为主,对流云团合并时,常先有云体上部(云顶)的合并,一旦云中不均匀的液水合并,合并部位的云光学厚度迅速增加,地面微波辐射计观测的整层液水含量跃增,地面将会出现强降水;一般降水增强之前云顶抬升,光学厚度增大;若云顶高但光学厚度较小时,地面降水一般不明显,光学厚度与降水的关系更密切;对流云团合并初期,云底由小粒子组成,T-re图上表现为深厚的凝结增长区域,合并时整层云粒子的有效半径增长明显,粒子相态达到混合相态区和冻结层的温度不断升高。  相似文献   

10.
利用FY-2E静止卫星反演的云参数产品对乌鲁木齐2015年12月11日和2017年12月27日两次暴雪天气过程进行分析,发现在降水发生前2 h,云宏观参数的云顶温度、黑体亮温、云顶高度和过冷层厚度都处于不断增强的较高水平,且出现快速增强后又不断减弱,对应后期可能要出现强降水,其中与小时降水量变化具有较好的相关性,降水前期相关参量较降水中后期都要大。在降雪天气中云顶温度普遍在-20~-60℃,云顶高度最大值均超过10 km,过冷层厚度集中在2~9 km。从云微观参量来看,降雪云的光学厚度主要在10~35,绝大多数的有效粒子半径分布在15~35μm,两场天气的液水路径分别分布在75.49~975.63 g/m2和47.41~796.01 g/m2,前者降雪天气的云宏微观参量均值都不同程度地大于后者。  相似文献   

11.
利用2018年贵州省12个冰雹个例资料,基于CPAS系统统计分析了冰雹个例的云顶高度、云顶温度、云有效粒子半径、云光学厚度、黑体亮温等卫星云监测产品的特征参数及其时间变化。结果表明:发生冰雹时回波云顶高度均在9 km以上,云顶温度均在-25℃以下,液水含量均在800 mm以上,云光学厚度均在40以上,发生冰雹时有效粒子半径大部分均在40μm以上,当Tbb达到-50℃且半小时内保持不变,对流云团对应的区域即将发生降雹,可考虑将其作为贵州省即将出现降雹的卫星监测指标判据。  相似文献   

12.
刘健 《气象学报》2015,(6):1121-1130
冰云的微物理特性参数反演是云参数反演的难点和热点问题,目前风云二号(FY-2)卫星还没有相关的业务产品。考虑薄卷云覆盖在中低云上的两层云情况,采用六棱柱形状的冰云,在云相态识别基础上,利用FY-2卫星观测数据,采用双通道算法反演冰云光学厚度。选取2013年8月的EOS/Terra和EOS/Aqua云参数产品对反演的FY-2云光学厚度精度进行比对分析。研究结果表明,联合FY-2的可见光通道和中波红外通道可反演冰云光学厚度。基于匹配得到的34个分析个例,FY-2反演的云光学厚度分布态势与EOS/MODIS云产品相同,但FY-2云光学厚度反演值小于EOS/MODIS云光学厚度产品值。FY-2反演云光学厚度与EOS/MODIS云光学厚度产品的平均偏差为6.41,相关系数平均为0.92,线性拟合平均斜率为0.74。FY-2与EOS/MODIS云光学厚度值偏差出现原因除了反演算法存在差异外,与反演所用数据的不同存在密切关系,基础观测数据越相近,FY-2与EOS/MODIS云光学厚度反演结果的偏差越小。  相似文献   

13.
冰云的微物理特性参数反演是云参数反演的难点和热点问题,目前风云二号(FY-2)卫星还没有相关的业务产品。考虑薄卷云覆盖在中低云上的两层云情况,采用六棱柱形状的冰云,在云相态识别基础上,利用FY-2 卫星观测数据,采用双通道算法反演冰云光学厚度。选取2013年8月的EOS/Terra和EOS/Aqua云参数产品对反演的FY-2云光学厚度精度进行比对分析。研究结果表明,联合FY-2的可见光通道和中波红外通道可反演冰云光学厚度。基于匹配得到的34个分析个例,FY-2反演的云光学厚度分布态势与EOS/ MODIS云产品相同,但FY-2云光学厚度反演值小于EOS/MODIS 云光学厚度产品值。FY-2 反演云光学厚度与EOS/MODIS云光学厚度产品的平均偏差为6.41,相关系数平均为0.92,线性拟合平均斜率为0.74。FY-2 与EOS/MODIS云光学厚度值偏差出现原因除了反演算法存在差异外,与反演所用数据的不同存在密切关系,基础观测数据越相近,FY-2 与EOS/MODIS云光学厚度反演结果的偏差越小。  相似文献   

14.
本文利用FY-2C静止卫星资料,以2013年5月8日四川盆地一次飞机增雨作业为例,反演了云顶温度、云顶高度、云粒子有效半径、液水路径、云光学厚度等云物理量参数,结合自动气象站资料和探空资料等,对此次飞机增雨效果进行了物理检验。结果表明:作业前,云顶温度-13℃,云粒子有效半径10μm,云体较厚,含有丰富的过冷水,具有较好增雨潜力;作业后,作业区云层增厚,云顶温度降低,云粒子有效半径增加至25μm,云顶冰晶化,冰水转化过程加快,产生了较多的降水,降水量增幅明显;作业后,对比区降水不充分,各云物理参数无明显变化。   相似文献   

15.
基于CloudSat资料的青藏高原地区云微物理特征分析   总被引:1,自引:0,他引:1  
青藏高原云物理特征的认识对高原天气和气候的研究有重要意义。利用2006年6月—2011年4月的CloudSat卫星资料,分析了青藏高原地区云的总云水路径、液态水路径、冰水路径及雷达反射率的分布特征,并对高原与东亚降水云的垂直结构进行对比,得到如下结论:(1) 总云水路径的大值区分布在高原西南坡、东南部及高原中部低值区分布在昆仑山脉、祁连山脉及其以北地区;暖季大于冷季;(2) 高原南部及东部为液水路径大值区,以液相云为主;高原中部、北部及西部为冰水路径大值区,以冰相云为主;(3) 雷达反射率的垂直分布主要介于-27~17 dBz,集中在3~9 km;云粒子群随高度先增大后减小,在4 km高度的大小和浓度最大;暖季云高大于冷季,对流活动旺盛;(4) 高原与东亚降水云的结构不同,季节变化也与东亚有差别。(5) 雷达反射率在近地面层随纬度的增大减小,垂直方向的递减率是暖季小于冷季;(6) 冷季的高原上与周边相比为丰水区,南坡的冰水路径与低层雷达反射率大值区对应,表明南坡阻挡作用促进云中冰粒子的形成。   相似文献   

16.
利用2014—2015年的云和地球辐射能量系统CERES Aqua Edition 4A SSF的云产品以及地面小时降水数据,对辽宁地区(38.5°N—43.5°N、118.5°E—126°E)云宏微观特征参量的时空分布进行分析,并研究各参数与降水的相关性,建立基于云光学厚度(COD)与云水路径(CWP)的降水云识别指标。结果表明,夏季云层发展旺盛,云量(CF)、COD、云顶高度(CTH)以及CWP值均较高,平均值分别为62.7%、17.9、6.5 km和252.1 g·m~(-2),而冬季云参数的值最低,分别为48.3%、7.0、3.4 km和106.2 g·m~(-2),仅云粒子有效半径(ER)显著高于其他季节。受地形影响,西部地区(122°E以西)的成云条件较东部差,除CTH较高外,其他云参量均较东部偏低。除云顶气压(CTP)和云顶温度(CTT)外,CF、COD、CWP和ER均随降水强度的增加而增加,说明云层越深厚降水强度越大,云含水量越高,粒子尺度越大。筛选出的与降水强度相关性最高的COD与CWP作为降水云识别因子,利用TS评分及HSS评分方法,选取评分值最高时对应的COD和CWP作为降水云的识别阈值,分别为35和415 g·m~(-2)。  相似文献   

17.
一次冷涡过程降水的微物理机制分析   总被引:6,自引:0,他引:6  
该文分析了一次冷涡天气过程中云微物理量的分布特征、降水粒子的增长机制及云下雨滴的蒸发效应。主要结果为:云系由低层暖性Sc云和冷性主体As云组成。As云底高2 km,云顶高大于5 km,云中存在比较大的过冷水区,–11.2 ℃时的过冷水含量0.21 g·m-3,但过冷水的含量分布极不均匀,大于0.05 g·m-3的过冷水区连续分布的宽度87%小于2.4 km,不利于云中冰晶的连续凇附增长;同时云下雨滴的蒸发效应大,直径小于1.0 mm的雨滴难以落到地面,因此本次过程只产生弱的降水。  相似文献   

18.
西北地区春季云系的垂直结构特征飞机观测统计分析   总被引:11,自引:0,他引:11  
根据2001年5—6月8架次的飞机探测资料,配合地面观测和卫星资料综合分析得出了西北地区春季云系的垂直结构宏微观特征,包括云厚、云底高度、云粒子浓度、含水量、有效半径、粒子谱分布函数等。降水性层状云厚平均约2000 m,低云含水量垂直方向上平均为0.07 g·m~(-3),中云含水量垂直方向上平均为0.03 g·m~(-3)。对比分析降水云和非降水云系的微物理特征量,两者存在显著的差异,降水性层状云有效半径要达到10~16μm。  相似文献   

19.
用FY-2C/D卫星等综合观测资料反演云物理特性产品及检验   总被引:10,自引:0,他引:10  
云的宏微观物理特性参数无论对天气、气候还是人工影响天气的研究和业务都有十分重要的应用价值.基于FY-2C/D静止卫星遥感观测,融合高空和地面等其它观测资料,研发了近10种云宏微观物理特性参数的反演技术方法,并实现业务化运行.简单介绍反演得到的云顶高度、云顶温度、云过冷层厚度、云暖层厚度、云底高度、云体厚度、云光学厚度、云粒子有效半径和云液水路径等近10种云宏微观物理参数产品的物理意义、反演技术方法和业务流程等;对主要云参数产品,利用最新获得的Cioudsat云卫星实测结果进行了对比检验和可用性分析;将反演产品同MODIS反演的同类产品进行对比分析,发现两者具有较好的一致性.  相似文献   

20.
中尺度强暴雨云团云特征的多种卫星资料综合分析   总被引:8,自引:0,他引:8       下载免费PDF全文
针对2002年6月23—27日发生于江淮地区的一次中尺度强暴雨过程,利用FY-1D,EOS和NOAA卫星的可见光、红外、微波通道遥感观测、反演资料,从相态、光学厚度、垂直结构等各方面分析云特征,并将分析结果与同时段地面雨量观测进行对比分析,发现云光学厚度大且云顶粒子为大粒子、冰相态是此次降雨过程中云团的主要云特征,地面雨量的大小与云光学厚度密切相关,两者间基本呈正相关关系;稳定少变的大光学厚度云或云光学厚度显著增大均可带来强的地面降水。微波资料可以很好地体现降雨云团的垂直结构。分析结果显示,卫星遥感对揭示中尺度强暴雨云团的云特征,具有很好的指示作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号