首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
本文选取2017年1~12月ECMWF(European Centre for Medium-Range Weather Forecasting)细网格模式168h预报时效的2m温度场和对应时段四川地区157个国家站的观测资料,对比分析了模式温度预报的系统性偏差特征,采用15日周期的滑动双权重平均法对2m温度预报产品进行偏差订正,并与四川省气象台现有的主、客观预报产品进行对比,结果表明:(1)EC模式对低温的预报准确率远高于高温预报准确率;订正后高、低温预报准确率均有显著提高,其中低温平均提高了20.5%,高温提高了31.2%,平均绝对误差分别减小约1.1℃和2.9℃。(2)EC模式高温预报的逐月差异明显比低温预报逐月差异大,订正后差异明显减小,且各月的高、低温预报准确率均有显著提升,订正后各月高、低温的平均绝对误差均在2℃之内。(3)EC模式对于低温和高温的预报在全省均大致呈现负的系统性误差,且高温预报的系统性误差明显比低温预报的系统性误差大,订正后2m温度预报的系统性误差均明显降低,全省大部分地区维持在±1℃之间。(4)与四川省气象台现有的主、客观预报产品对比显示,对于高低温预报均是EC订正后准确率最高、平均绝对误差最小,订正效果较为理想。  相似文献   

2.
选取2022年1月1日—12月31日ECMWF细网格模式2 m温度预报24 h以内预报时效产品和对应时次的福建省70个国家站观测资料进行分析,采用ARIMA(差分自回归移动平均)模型和双权重ARIMA模型分别对2 m温度预报产品进行偏差订正,并对订正前后的结果进行对比分析。结果表明:1) ECMWF模式2 m温度预报在福建省主要呈现冷偏差,随着预报时效的增加,均方根误差和准确率随之变差;分别用两种模型进行订正,平均绝对误差由2.1℃以内减小到1.6℃以内,均方根误差从2.5℃以内降低到2.1℃以内,且偏差越大,订正效果越明显。2) ECMWF模式2 m温度逐月预报效果差异较大,订正后各评价指标均有显著改进,各月平均误差在-0.5—0.5℃。3) ECMWF模式2 m温度预报偏差主要表现为福建东部沿海小、中西部较大;订正后平均绝对误差和均方根误差减小至2℃以内,且对高海拔地区的站点改善效果更加明显。与ARIMA模型相比,双权重ARIMA模型订正后平均绝对误差与均方根误差更小、准确率更高,订正效果更好。  相似文献   

3.
基于升级后的EC细网格TP降水量预报产品,对北疆2015年17场降雪天气的12h累积降雪量,主要运用平均误差、平均绝对误差和均方根误差进行了检验。结果表明,该模式在北疆降雪天气预报中小雪的预报准确率最高,暴雪最小;预报准确率随时效的延长并非都是减小的;小雪空报率较高、暴雪漏报率较高,中雪和大雪空报率和漏报率都不容忽视;小雪和中雪的3种误差均较小,随时效的延长变化较小;强降雪(大雪及以上量级)的误差较大,随时效的延长有增大的趋势;模式对小雪的预报总体为系统性偏大,对强降雪预报则为明显的系统性偏小,对中雪的预报系统性偏向不稳定。  相似文献   

4.
基于德国天气在线T7online(简称T7)、ECMWF细网格(简称EC)及T639三种数值模式的气温预报产品,结合本溪站气象观测资料,对三种数值模式2014年1月至2015年12月本溪市气温预报的准确率及预报误差进行了检验和分析,根据误差分析结果利用BP神经网络模型建立了本溪市数值模式气温预报误差客观化订正模型。结果表明:对于气温预报的年检验,T7、EC和T639三种数值模式的最低气温预报准确率均高于最高气温的预报准确率;对于气温预报的月检验,三种数值模式对夏季、秋季最低气温的预报效果明显优于冬季和春季,而对于最高气温的预报,T7的气温预报准确率明显优于EC和T639模式;当气温波动较大时,三种数值模式气温的预报准确率均明显下降。三种数值模式对最低气温预报的平均误差均为2.00℃以内,对最高气温的预报准确率存较大差别,T7模式最高气温的预报误差最小,T639模式气温预报的系统偏差最明显,最低气温系统偏差为-1.34℃,最高气温系统偏差为-2.87℃。根据三种数值模式气温预报误差的特征,结合BP神经网络建立本溪市气温误差预报模型对数值模式气温预报结果进行订正,订正后气温平均绝对误差由2.40℃左右降至1.40℃左右,系统偏差和均方根误差均明显缩小,气温预报准确率由50%左右提高至80%以上,数值模式气温预报准确率明显提高,具有较好的应用价值。  相似文献   

5.
本文对2013年1~12月ECMWF细网格2米温度在新疆区域的预报效果进行了统计检验。结果表明:ECMWF细网格2米温度预报为系统性偏高,预报效果随预报时效的延长而逐渐变差。三天内温度预报的绝对误差小、预报准确率高,对实际温度预报有很好指导作用;七天内温度预报的绝对误差较小,预报准确率较高,对实际温度预报具有参考价值;八到十天预报误差大、准确率低,对实际温度预报参考价值不大。温度预报精度在蒙古国西部最低,北疆盆地次之,南疆盆地最高。  相似文献   

6.
利用2011年7月-2012年7月欧洲中期天气预报中心(ECMWF)模式细网格地面2m温度和广西区域自动站气温观测资料,对比分析了EC模式细网格2m温度24小时时效内在华南西部地区不同季节、不同天气系统影响下的预报性能。结果表明:(1)全年平均而言,低温预报误差整体较小,预报准确率达77.7%,高温预报误差变化较大,准确率只有32.8%,低温预报准确率比高温预报准确率高44.9%,低温预报具有较高的参考价值。(2)不同季节高温低温预报差异明显,在夏季(6月-8月)低温预报的准确率达80%,但最高温度的预报准确率只有10%左右;在冬季,最低温度准确率下降到65%左右,而最高温度准确率相反,上升至50%左右。(3)不同地理区域预报性能差别较大:最高温度预报1-3月桂西可信度较高,达60%,4-5月和11-12月四个月只有桂东部分地区的预报具有一定的参考价值。(4)从全年误差分布来看,高温预报在冬季是误差小的所占比重大,误差大的比重小,夏季的则相反,春秋的误差等级分布的较为均匀,每个等级所占比重相似。低温预报则分布的比较均匀,全年基本都是误差越小占比重越大,只是冬季误差小的比重相对较小。5)不同天气形势的温度预报性能亦不同:冬春季冷空气(锋面)影响过程和春季低温阴雨过程的高温预报有一定的参考价值;夏季区域性暴雨过程和副热带高压影响过程的高温预报参考价值较低,误差平均达31%和5.8%,可作为预报主观订正的幅度参考值,四种天气型的低温预报准确性都较高,达到70%以上。  相似文献   

7.
贵州省冬季地表(0cm)温度预报探讨   总被引:1,自引:0,他引:1  
利用EC细网格地温预报资料,进行预报准确率检验,检验结果表明,EC细网格地温预报准确率较差。并利用1971—2014年贵州0 cm地温资料和气温资料,对贵州冬季地温与气温的关系进行分析,应用统计回归方法建立以气温为基础的地温模型,从而实现通过气温估算地温,并对地气模型进行了检验;结果表明,平均地温预测模型和最低地温预测模型准确率分别达到92%和80%,绝对误差均小于2℃,最高地温预测模型准确率仅有42%,今后需要考虑在不同天气(晴、多云、阴、雨、雪等)条件,分别建立最高地温预测模型。  相似文献   

8.
利用遵义市14个县区站2013—2015年逐日最高气温、最低气温实况数据,检验分析了对应时段内欧洲中心(EC)细网格2 m(简称EC 2 m)温度预报产品对遵义市的预报准确率,在此基础上,根据2015年EC 2 m温度预报平均误差,对2016年1—8月EC 2 m温度进行订正检验。结果表明:2013—2015年EC 2 m温度对遵义地区预报准确率呈逐年上升趋势,最低气温预报准确率远高于最高气温。其中,2015年EC 2 m温度预报系统性偏低;最高气温的预报准确率呈冬、秋、春、夏递减,最低气温的预报准确率呈夏、秋、春、冬递减;最高气温预报准确率随时效延长呈下降趋势,最低气温预报准确率随时效延长呈波动变化趋势;播州、汇川、绥阳、赤水、习水、凤冈各时次的最低气温预报准确率都在80%以上,参考性强,其余站点相对较低。通过平均误差对EC 2 m温度进行订正并检验,订正效果明显。  相似文献   

9.
利用毕节市8个国家站02时、14时气温实况数据,分别计算2016—2018年冬季(12月、1月、2月)EC细网格2 m温度预报的准确率、平均绝对误差、绝对误差,检验在升温、平稳、降温3类天气过程中温度预报效果,为模式温度预报订正提供参考依据。结果表明:02时的预报平均准确率比14时高约10%;除赫章站以外,其余站点准确率在60%~80%之间,有一定预报参考意义;3类天气过程中,平稳、降温天气中温度预报效果明显优于升温天气;升温天气过程中02、14时温度预报大多偏低0~4℃,降温天气过程中02时温度预报总体偏低0~4℃,14时偏高0~4℃。  相似文献   

10.
基于ECMWF细网格模式输出产品,以一种优化的BP-MOS模型预测1~7 d日最高和最低气温,并对比该方法和ECMWF细网格的2 m温度输出产品以及线性MOS方法的预报效果。结果表明:在预报因子处理时,考虑云量、风、湿度等对气温变化的"过程"影响能有效提高预报准确率;ECMWF细网格2 m温度产品在短期3 d内均方根误差均在2℃以内,但中期时段预报效果明显低于MOS方法;由于线性MOS模型预报存在不稳定现象,而BP神经网络的非线性映射关系使其在容错性方面优势明显,因此优化的BP-MOS模型预测效果良好。  相似文献   

11.
EC细网格温度预报在贵阳地区的释用效果分析   总被引:1,自引:0,他引:1  
该文利用贵阳8个站点02时、14时整点气温对EC细网格2013年7—11月的2 m温度不同时效的预报分别进行检验,并对升温、降温、平缓天气3种不同天气背景下预报结果进行对比检验分析。分析结果表明:EC细网格对贵阳地区的2 m温度预报质量随着预报时效的延长呈波动性变化,预报时次及预报时间一定时,预报质量随预报时效的延长而降低;预报时效相同时,对夜间的气温预报质量比对白天气温预报质量高,两者准确率相差达10%以上,EC细网格对贵阳地区修文、白云的预报质量最好,对花溪、乌当预报质量最差。当本地出现升温时,EC细网格预报质量较好,出现降温时,EC细网格预报质量明显降低。  相似文献   

12.
本文采用2013、2014(1-10月)年的EC细网格2 m气温预报资料,通过双线性插值方法对黑龙江省83个站点进行插值,得出EC细网格模式对于日极端气温的预报误差并进行分析。结果表明,EC细网格模式本身对于最高气温的预报准确率高于最低气温,预报误差具有显著的季节性变化特征,但不同的起报时间对误差的影响并不明显。EC细网格模式的预报误差符合正态分布,具有可订正性。  相似文献   

13.
利用EC模式对2017年沧州市14个国家基本站2m最高、最低温度的24、48、72h预报结果,采用预报准确率、平均误差、平均绝对误差和皮尔森相关系数等统计方法进行检验及订正。结果表明:EC模式对不同预报时效预报准确率,最高温度模式20时起报高于08时,最低温度08时起报高于20时;随着预报时效的延长,模式预报准确率逐渐下降。预报准确率最高温度区域差异不明显,月际变化大;最低温度区域差异显著,月际变化不均。EC模式对沧州温度的预报误差主要由系统误差造成,温度预报绝大多数的大值误差出现在转折性天气阶段,当出现明显升温和高温时,最高温度预报偏低更明显,出现明显降温时,最低温度预报偏高。对2018年1-4月EC模式预报最高、最低温度进行系统和大误差订正检验,发现订正后预报效果更好。  相似文献   

14.
选取2016年1月至2018年12月ECMWF(简称EC)细网格10 m风资料,与大连地区8个国家气象观测站地面各类实况风速资料进行对比分析,得出EC 10 m风速预报与最大风速最为接近,与极大风速相关性最好,EC 10 m风速对大连地区8站整体预报平均偏大。通过对EC 10 m风速各预报时限资料与其对应的最大风速误差进行统计分析。结果表明:按实况分类,从风速平均误差来看,实况3级与预报最接近,小于3级时预报偏大,大于3级时预报偏小,各风向间的风速误差也比较明显,但比风级间的误差要小一些;平均绝对误差则是2—3级最小。各时限风速平均误差相差不大,基本在0.1—0.3 m·s-1间,平均绝对误差则随时限延长呈缓慢增大趋势。风速误差具有明显的日变化,表现出白天小、夜间大、午后最小、下半夜最大的特征。风速误差也因测站不同,在不同风级和风向的反应也各不相同。  相似文献   

15.
针对离散站点资料格点化的业务需求及 Cressman 方法在地形复杂区域客观分析存在的问 题,利用山东及周边省自动气象站观测的 2 m气温和 ECMWF预报的海上 2 m气温,结合山东省中尺度数值预报位温递减率、90 m分辨率 SRTM高程数据,采用统一高度 Cressman 方法对山东省地面2 m气温进行客观分析,生成了逐 1 h、0.01°×0.01°高分辨率的地面 2 m气温格点产品。结果表明,统一高度 Cressman 方法的客观分析格点产品在地形复杂区域的分析更合理,月平均误差基本在±1 ℃以内,鲁中山区地形高度较高区域月平均误差略大于鲁西北、鲁西南、鲁东南和山东半岛等地的平原地区,气温偏低的10、11、12月温度准确率均略低于 5、6、7、8、9 月;2020 年 5—12 月平均误差为-0.0039 ℃,平均绝对误差为 0.1469 ℃,均方根误差为 0.3597 ℃,2 ℃以内准确率为 99.64%,1 ℃以内准确率为 98.24%,各项检验指标均较优。总体上统一高度 Cressman 客观分析格点产品质量接近中国气象局陆面数据同化系统( HRCLDAS )高分辨率格点实况产品。  相似文献   

16.
利用库尔勒市气象局2003—2012年春、秋季最低地面温度、最低气温、云量、风速和海平面气压等气象要素资料,分析该地区的霜冻特征以及最低地面气温和其它气象要素之间的关系,结果表明:(1)库尔勒市霜冻主要出现时段为10月、11月以及次年的3月;(2)最低气温与最低地面温度之差介于-3~8℃,其中在3~5℃之间占总数的72.5%;(3)当08时海平面气压低于1015 hPa时,发生霜冻的概率仅为4.8%;气压超过1025 hPa时,出现霜冻的概率达84.7%;(4)通过最低气温、云量和风速建立的最低地面气温预报方程,分别对最低地面温度和霜冻做出预报,其中最低地面温度预报的准确率在70.7%~83.5%之间,霜冻预报的准确率为89.9%,效果良好。  相似文献   

17.
该文对2013年昌吉州区域3种主客观温度预报产品进行质量检验,预报时效24 h、48 h、72 h;对温度预报误差≤2℃的百分率(准确率)、平均绝对误差、均方根误差统计检验。对预报员和模式预报产品的质量、技巧评分进行对比分析。结果表明:预报员的24 h预报质量略优于模式的预报质量。48~72 h最高温度预报质量,EC细网格预报最好。分析主客观预报质量的月变化和站点变化,为业务工作中的参考权重提供依据。提出了选取最优订正值订正客观预报系统偏差的方法(预估若干订正值,分别计算每个订正值在一段时间内的平均绝对误差和准确率,选取其中平均绝对误差最小且准确率最高的订正值),并通过制作相应软件投入业务运用。  相似文献   

18.
为检验不同数值模式产品对山东不同站点2m日最高、最低气温24h预报效果,利用2014年6—8月逐3h的WRF-RUC、EnWRF确定性预报、不同集合百分位数、T639、中国气象局下发的T639-MOS解释应用产品以及EC细网格预报进行TS评分、误差等分析。结果表明:EC细网格对内陆最高气温预报准确率最高,EnWRF确定性预报次之,EC细网格和T639-MOS对内陆最低气温预报准确率最高。T639和EC细网格分别对沿海最高和最低气温预报准确率最高。对各模式单站气温预报进行最优模式分析发现,对于最高气温预报最优的模式为EC细网格和EnWRF确定性预报,分别集中在鲁西南和鲁北、鲁中和鲁东南。对于最低气温预报最优的模式为EC细网格和T639-MOS,T639-MOS主要对鲁中山区预报较好,其他地区两个模式预报效果基本相当。  相似文献   

19.
利用2015年1月-2021年3月ECMWF细网格数值预报产品构建训练样本,使用自动机器学习方法构建乌鲁木齐机场温度预测模型。结果表明:(1)ECMWF模式直接输出的乌鲁木齐机场温度平均绝对误差为1.7 ℃,基于自动机器学习方法的Auto-sklearn模型和Auto-Keras模型能够改善模式直接输出的误差,使平均绝对误差降低至1.4 ℃。(2)分析逐月模型预测准确率发现,Auto-sklearn模型的预报准确率(≤2 ℃)在4-10月稳定在85%以上,效果优于其余模型。(3)对于冬季低温天气,Auto-Keras模型预报准确率优于其余模型的效果,平均绝对误差为1.37~1.91 ℃;而对于温度≥0 ℃的情况,Auto-sklearn模型预测效果更好,平均绝对误差为0.93~1.22 ℃ 。  相似文献   

20.
利用2013—2015年ECMWF(简称EC)细网格模式2m气温预报产品,分析了不同季节和不同天气形势下EC细网格模式产品对青岛地区7个基准站逐日最高气温和最低气温的预报性能。结果表明:EC细网格模式2m气温预报误差沿海站点大于内陆站点,且误差随着预报时效的延长逐渐增大。最高气温预报除胶州站外均为负误差,最低气温预报青岛、平度、莱西为正误差,崂山、黄岛、胶州和即墨为负误差。最高气温预报在3—4月和8—9月预报质量不稳定,最低气温预报夏半年好于冬半年。根据模式误差特点,给出7站气温主观订正参考值,订正后最高气温预报准确率提高3%~16%,最低气温预报准确率提高4%~18%。EC细网格模式对于暴雨、强对流、高温晴热、回暖天气、冷空气过程最高气温预报偏低,海雾影响时最高温度预报偏高;对冬季大雾情形下的最低气温预报偏低,辐射降温时最低气温预报沿海站点偏低,北部内陆站点偏高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号