首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the daily maximum temperature data and average temperature data prediction for the period ranging from 2020 to 2099 under the scenario of BNU-ESM climate engineering(G4 test) and non-climate engineering(RCP4.5), the regional differences in the extreme high-temperature intensities in China during the implementation of climate engineering programs(2020 to 2069) and after the implementation of those programs(2070 to 2099) were analyzed using the Weibull Distribution Theory. The results are as follows.(1) The comparison of the two scenarios shows that climate engineering has not fundamentally changed the spatial variation of the intensity of extreme hightemperature events in different recurring periods in China. It was found that in both scenarios, the extreme hightemperature intensities were characterized by the spatial differentiations of low-temperature intensities on the QinghaiTibet Plateau, and high-temperature intensities in the eastern and northwestern region.(2) The comparison of the two scenarios shows that climate engineering in the two study periods could help mitigate the extreme high-temperature intensities with different recurrence periods in China, and the mitigation effects during the implementation period would be significantly higher than those after the implementation.(3) The comparison between the periods ranging from 2020 to 2069 and 2070 to 2099 under the proposed climate engineering scenarios suggests that there would be no strong rebounding of extreme high-temperatures following the implementation of climate engineering programs. Moreover, the mitigation effect of extreme high-temperature intensity during the implementation of climate engineering is significantly higher than that after the completion of climate engineering.(4) According to the comparison between the average temperature changes in China before and after the implementation of the climate project, the average temperature in China has been reduced by at least 1.25 ℃, which effectively alleviates global warming and is conducive to the realization of the 1.5 ℃ temperature control target of the Paris Agreement.  相似文献   

2.
Based on the daily maximum temperature data and average temperature data prediction for the period ranging from 2020 to 2099 under the scenario of BNU-ESM climate engineering (G4 test) and non-climate engineering (RCP4.5), the regional differences in the extreme high-temperature intensities in China during the implementation of climate engineering programs (2020 to 2069) and after the implementation of those programs (2070 to 2099) were analyzed using a Weibull Distribution Theory. The results indicated the following: (1) The results of this study’s comparison between the two scenarios had shown that climate engineering had not fundamentally changed the spatial features of the high and low differentiations for the extreme high-temperature intensities with the different recurrence periods in China. It was found that in both scenarios, the extreme high-temperature intensities were characterized by the spatial differentiations of low-temperature intensities on the Qinghai-Tibet Plateau, and high-temperature intensities in the eastern and northwestern region; (2) This study’s comparison results of the two scenarios had indicated that the climate engineering processes during the two study periods could potentially help mitigate the extreme high-temperature intensities with different recurrence periods in China. Furthermore, the mitigation effects during the implementation period would be significantly higher than those after the implementation; (3) This study’s results of the comparison between the periods ranging from 2020 to 2069 and 2070 to 2099 under the proposed climate engineering scenarios suggested that there would be no strong rebounding of the extreme high-temperatures following the implementation of climate engineering programs, and the mitigation effects on the extreme high-temperature intensities during the implementation of the climate engineering programs would be significantly higher than after the implementation of the programs; (4) When comparisons were made of the changes of the average temperatures in China before and after the implementation of climate engineering programs, the results had shown that the average temperature in China had been reduced by at least 1.25℃ as a result of climate engineering, which would effectively alleviate the global warming trend, and could also be conducive to the realization of a temperature control target of 1.5℃ in accordance with the Paris Agreement.  相似文献   

3.
Stable light data from Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) satellites and authoritative energy consumption data distributed by National Bureau of Statistics of China were applied to estimating the distribution of anthropogenic heat release in China from 1992 to 2009. A strong linear relationship was found between DMSP/OLS digital number data and anthropogenic heat flux density (AHFD). The results indicate that anthropogenic heat release in China was geographically concentrated and was fundamentally correlated with economic activities. The anthropogenic heat release in economically developed areas in northern, eastern, and southern China was much larger than other regions, whereas it was very small in northwestern and southwestern China. The mean AHFD in China increased from 0.07 W m-2 in 1978 to 0.28 W m-2 in 2008. The results indicate that in the anthropogenic heat-concentrated regions of Beijing, the Yangtze River Delta, and the Pearl River Delta, the AHFD levels were much higher than the average. The effect of aggravating anthropogenic heat release on climate change deserves further investigation.  相似文献   

4.
Partial Least Squares Regression (PLSR) is used to study monthly changes in the influence of the Arctic Oscillation (AO) on spring, summer and autumn air temperature over China with the January 500 hPa geopotential height data from 1951 to 2004 and monthly temperature data from January to November at 160 stations in China. Several AO indices have been defined with the 500-hPa geopotential data and the index defined as the first principal component of the normalized geopotential data is best to be used to study the influence of the AO on SAT (surface air temperature) in China. There are three modes through which the AO in winter influences SAT in China. The influence of the AO on SAT in China changes monthly and is stronger in spring and summer than in autumn. The main influenced regions are Northeast China and the Changjiang River drainage area.  相似文献   

5.
The Influence of ENSO on the Summer Climate Change in China and Its Mechanism   总被引:130,自引:17,他引:130  
The influence of ENSO on the summer climate change in China and its mechanism from the observed data is discussed. It is discovered that in the developing stage of ENSO, the SST in the western tropical Pacific is colder in summer, the convective activities may be weak around the South China Sea and the Philippines. As a consequence, the subtropical high shifted southward. Therefore, a drought may be caused in the Indo-China peninsula and in the South China. Moreover, in midsummer the subtropical high is weak over the Yangtze River valley and Huaihe River valley, and the flood may be caused in the area from the Yangtze River valley to Huaihe River valley. On the contrary, in the decaying stage of ENSO. the convective activities may be strong around the Philippines, and the subtropical high shifted northward, a drought may be caused in the Yangtze River valley and Huaihe River valley.  相似文献   

6.
Based on observed snow and precipitation data and NCEP/NCAR reanalysis data,the relationship between the number of winter snow cover days in Northeast China and the following summer’s rainfall in the northern part of southern China is analyzed and the possible underlying mechanisms are discussed.The results indicate that a negative relationship is significant throughout the study period,especially more obvious after the 1980s.The pre-winter circulation patterns in years with more snow cover days and less summer rainfall in the south bank of the Yangtze River are almost the same.In years with more snow cover days,lower temperatures at the lower level over Northeast China are found in winter and spring.The winter monsoon is weaker and retreats later in these years than in those with fewer snow cover days.In spring of years with more snow cover days,anomalous cyclonic circulation is observed over Northeast China,and anomalous northerly wind is found in eastern China.In summer of these years,anomalous northeasterly wind at the lower level is found from the area south of the Yangtze River to the East China Sea and Yellow Sea;and with less southwesterly water vapor transport,the rainfall in the area south of the Yangtze River is less than normal,and the opposite patterns are true in years with fewer snow cover days.In recent years,the stable relationship between winter snow cover in Northeast China and summer rainfall in the Yangtze River basin can be used for summer rainfall prediction.The results are of great importance to short-term climate prediction for summer rainfall.  相似文献   

7.
The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific.  相似文献   

8.
Many studies have shown evidence for significant changes in surface climate in different regions of the world and during different seasons over the past 100 years. Based on daily temperature and precipitation data from 720 climate stations in China, cluster analysis was used to identify regions in China that have experienced similar changes in the seasonal cycle of temperature and precipitation during the 1971-2000 climate normal period. Differences in 11-day averages of daily mean temperature and total precipitation between the first (1971-1985) and second (1986-2000) halves of the record were analyzed using the Mann- Whitney U test and the global κ-means clustering algorithm. Results show that most parts of China experienced significant increases in temperature between the two periods, especially in winter, although some of this warming may be attributable to the urban heat island effect in large cities. Most of western China experienced more precipitation in 1986-2000, while precipitation decreased in the Yellow River valley. Changes in the summer monsoon were also evident, with decreases in precipitation during the onset and decay phases, and increases during the wettest period.  相似文献   

9.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative LGM climate response to changes of land-sea distribution, vegetation, and large-scale circulation background over China. Model results show that compared with the present climate, the fluctuations of sea-land distribution in eastern Asia during the LGM result in the temperature decrease in winter and increase in summer. It has significant impact on the temperature and precipitation in the east coastal region of China. The impact on precipitation in the east coastal region of China is the most significant one, with 25%-50% decrease in the total precipitation change during the LGM. On the other hand, the changes in sea-land distribution have less influence on the climate of inland and western part of China. During the LGM, significant changes in vegetation result in temperature alternating with winter increase and summer decrease, but differences in the annual mean temperature are minor. During the LGM, the global climate, i.e., the large-scale circulation background has changed significantly. These changes have significant influences on temperature and precipitation over China. They result in considerable temperature decreases in this area, and direct the primary patterns and characteristics of temperature changes. Results display that, northeastern China has the greatest temperature decrease, and the temperature decrease in the Tibetan Plateau is larger than in the eastern part of China located at the same latitude. Moreover, the change of large-scale circulation background also controls the pattern of precipitation change. Results also show that, most of the changes in precipitation over western and northeastern parts of China are the consequences of changing large-scale circulation background, of which 50%-75% of precipitation changes over northern and eastern China are the results of changes in large-scale circulation backgrou  相似文献   

10.
By analyzing the Fractal Dimension(FD) distribution of the Short-range Climate system(SCS) in China, it is found that the FD varies in different region and this just agrees with the regionally of the monsoon climate in China. The FD of the SCS Lays between 2.0 and 5.0. In the vast eastern area of China, the FD almost grows gradually with the latitude. Line 4.0 is along the mountain chains from the Nanlin Mountain to the Wuyi Mountain. North of the line the FD varies only slightly and all are above 4.0. Only in coastal islands the FD is smaller than 3.0.  相似文献   

11.
Using the three-layer variable infiltration capacity (VIC-3L) hydrological model and the successive interpolation approach (SIA) of climate factors, the authors studied the effect of different land cover types on the surface hydrological cycle. Daily climate data from 1992 to 2001 and remotely-sensed leaf area index (LAI) are used in the model. The model is applied to the Baohe River basin, a subbasin of the Yangtze River basin, China, with an area of 2500 km2. The vegetation cover types in the Baohe River basin consist mostly of the mixed forest type (85%). Comparison of the modeled results with the observed discharge data suggests that: (1) Daily discharges over the period of 1992–2001 simulated with inputs of remotely-sensed land cover data and LAI data can generally produce observed discharge variations, and the modeled annual total discharge agrees with observations with a mean difference of 1.4%. The use of remote sensing images also makes the modeled spatial distributions of evapotranspiration physically meaningful. (2) The relative computing error (RCE) of the annual average discharge is ?24.8% when the homogeneous broadleaf deciduous forestry cover is assumed for the watershed. The error is 21.8% when a homogeneous cropland cover is assumed and ?14.32% when an REDC (Resource and Environment Database of China) land cover map is used. The error is reduced to 1.4% when a remotely-sensed land cover at 1000-m resolution is used.  相似文献   

12.
The ENSO’s Effect on Eastern China Rainfall in the Following Early Summer   总被引:6,自引:0,他引:6  
ENSO’s effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the El Nino peak, the precipitation is significantly enhanced in the Yangtze River valley while suppressed in the Huaihe River-Yellow River valleys. This relationship between ENSO and the rainfall in eastern China is established possibly through two teleconnections: One is related to the western North Pacific (WNP) ...  相似文献   

13.
By means of varied statistical methods,such as normalized root mean square error(RMSE),correlation analysis,empirical orthogonal function(EOF)decomposition,etc.,the reliability of the varied seasonal anomalies of NCEP/NCAR reanalyzed wind speed and surface air temperature(SAT)data frequently used in the climate change research in China is studied.Results show that RMSEs of meteorological variables are smaller in eastern China than in western China,i.e.,the reliability of NCEP/NCAR reanalysis in eastern China is better than that in western China.This could be due to effects of the topography in the reanalysis model and the disposition of"dense-in-eastern-and-sparse-in-western"of meteorological stations in China. The RMSE of anomalies of reanalyzed wind speeds decreases with increasing height,further confirming the possible impact of topography on reliability of reanalysis.Results of correlation analysis inversely correspond to those of RMSE analysis,i.e.,if the RMSE is larger,the correlation between reanalyzed and observed data is worse,and vice versa.It is found from comparing the EOF eigenvectors of anomaly of reanalyzed and observed data that if a meteorological variable has smaller RMSE,the spatial patterns of corresponding EOF eigenvectors of anomaly of reanalyzed and observed data are similar and their time coefficients are significantly correlated,and vice versa.Therefore,the similarity of EOF modes and the consistency of their time coefficients can be used to objectively assess the reliability of the reanalysis.On the whole,the reliability of the reanalyzed wind speed is better in spring,summer,and autumn,but worse in winter;and for the reanalyzed SAT,it is the best in winter and the worst in summer.  相似文献   

14.
Variability in the East Asian summer monsoon(EASM) brings the risk of heavy flooding or drought to the Yangtze River basin, with potentially devastating impacts. Early forecasts of the likelihood of enhanced or reduced monsoon rainfall can enable better management of water and hydropower resources by decision-makers, supporting livelihoods and major economic and population centres across eastern China. This paper demonstrates that the EASM is predictable in a dynamical forecast model from the pr...  相似文献   

15.
By using the improved regional climate model (BCC_RegCM1.0), a series of modeling experiments are undertaken to investigate the impacts of historical land-use changes (LUCs) on the regional climate in China. Simulations are conducted for 2 years using estimated land-use for 1700, 1800, 1900, 1950, and 1990. The conversion of land cover in these periods was extensive over China, where large areas were altered from forests to either grass or crops, or from grasslands to crops. Results show that, since 1700, historical LUCs have significant effects on regional climate change, with rainfall increasing in the middle and lower reaches of the Yangtze River Basin, Northwest China, and Northeast China, but decreasing by different degrees in other regions. The air temperature shows significant warming over large areas in recent hundred years, especially from 1950 to 1990, which is consistent with the warming caused by increasing greenhouse gases. On the other hand, historical LUCs have obvious effects on mean circulation, with the East Asian winter and summer monsoonal flows becoming more intensive, which is mainly attributed to the amplifled temperature difference between ocean and land due to vegetation change. Thus, it would be given more attention to the impacts of LUCs on regional climate change.  相似文献   

16.
Recent Progress in the Impact of the Tibetan Plateau on Climate in China   总被引:14,自引:0,他引:14  
Studies of the impacts of the Tibetan Plateau (TP) on climate in China in the last four years are reviewed. It is reported that temperature and precipitation over the TP have increased during recent decades. From satellite data analysis, it is demonstrated that most of the precipitation over the TP is from deep convection clouds. Moreover, the huge TP mechanical forcing and extraordinary elevated thermal forcing impose remarkable impacts upon local circulation and global climate. In winter and spring, stream flow is deflected by a large obstacle and appears as an asymmetric dipole, making East Asia much colder than mid Asia in winter and forming persistent rainfall in late winter and early spring over South China. In late spring, TP heating contributes to the establishment and intensification of the South Asian high and the abrupt seasonal transition of the surrounding circulations. In summer, TP heating in conjunction with the TP air pump cause the deviating stream field to resemble a cyclonic spiral, converging towards and rising over the TP. Therefore, the prominent Asian monsoon climate over East Asia and the dry climate over mid Asia in summer are forced by both TP local forcing and Eurasian continental forcing.
Due to the longer memory of snow and soil moisture, the TP thermal status both in summer and in late winter and spring can influence the variation of Eastern Asian summer rainfall. A combined index using both snow cover over the TP and the ENSO index in winter shows a better seasonal forecast.
On the other hand, strong sensible heating over the Tibetan Plateau in spring contributes significantly to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and the western Indochina peninsula. Qualitative prediction of the BOB monsoon onset was attempted by using the sign of meridional temperature gradient in March in the upper troposphere, or at 400 hPa over the TP. It is also demonstrated by a numerical experiment and theoretical study that the heating over the TP lea  相似文献   

17.
In this study,a 2000-year simulation forced by transient,external forcings is carried out with the Community Earth System Model.The authors investigate the spatiotemporal features of climate change in the Han Dynasty(1–200 A.D.)using the empirical orthogonal function(EOF)method.The leading EOF mode of the annua mean temperature anomalies shows a uniform variation of temperature over the whole of China,while the second EOF mode indicates opposite variations of temperature between western and eastern China.For the annual mean precipitation anomalies,the first EOF mode indicates a meridional dipole pattern over eastern China,with increased(decreased)precipitation to the south of the Yangtze River and decreased(increased)precipitation to the north.The leading mode of the 850 h Pa winds and sea level pressure in summer exhibits a southwesterly(northeasterly)anomaly over South China,which is associated with a strengthened(reduced)meridional sea level pressure gradient.Compared to reconstructions,the model can capture the majority of features of climate changes in the Han Dynasty,though it underestimates the magnitude.  相似文献   

18.
Using the hindcasts provided by the Ensemble-Based Predictions of Climate Changes and Their Impacts(ENSEMBLES) project for the period of 1980–2005, the forecast capability of spring climate in China is assessed mainly from the aspects of precipitation, 2-m air temperature, and atmospheric circulations. The ENSEMBELS can reproduce the climatology and dominant empirical orthogonal function(EOF) modes of precipitation and 2-m air temperature, with some differences arising from different initialization months. The multi-model ensemble(MME) forecast of interannual variability is of good performance in some regions such as eastern China with February initialization.The spatial patterns of the MME interannual and inter-member spreads for precipitation and 2-m air temperature are consistent with those of the observed interannual spread, indicating that internal dynamic processes have major impacts on the interannual anomaly of spring climate in China. We have identified two coupled modes between intermember anomalies of the 850-hPa vorticity in spring and sea surface temperature(SST) both in spring and at a lead of 2 months, of which the first mode shows a significant impact on the spring climate in China, with an anomalous anticyclone located over Northwest Pacific and positive precipitation and southwesterly anomalies in eastern China.Our results also suggest that the SST at a lead of two months may be a predictor for the spring climate in eastern China. A better representation of the ocean–atmosphere interaction over the tropical Pacific, Northwest Pacific, and Indian Ocean can improve the forecast skill of the spring climate in eastern China.  相似文献   

19.
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years.It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cover over QXP not only in the interannual variation but also in the decadal variation. A clear relationship exists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four climate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP.  相似文献   

20.
Based on the variations of geographical locations, the summer rain belts over eastern China were classified in this study into eight types: Inner Mongolia, North China, the Yellow River, the Huaihe River, the Yangtze River, the northern and southern parts of Jiangnan ( to the south of the lower Yangtze River valley), and South China. The file of 8-type rain belts was compiled from 1470 to 2005, and in order to extend the file of rain belts, it was further merged into a file of 4-type rain belts and also completed during the last millennium from 1000 to 1999. At last, the two files show that summer rain belts frequently occur in the Yangtze River valley in warm climate periods, but in the Yellow River or the Huaihe River valley in cold periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号