首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.  相似文献   

2.
The Sulawesi Sea and Sulawesi Island are located in the western Pacific area where volcanic activity,plate subduction,and seismic activity are very active.The Sulawesi basin formed during the Middle Eocene-Late Eocene and nearly half of the Eocene oceanic crust has subducted below the North Sulawesi Trench.The Sulawesi Island was spliced and finalized in the Early Pliocene-Pleistocene during volcanic activity and is recently very active.This area is an optimal location to study volcanic geothermal conditions and subduction initiation mechanisms in the southern part of the western Pacific plate margin,which are important in geothermal and geodynamic research.In this study,we combined 133 heat flow data with gravity and magnetic data to calculate the Moho structure and Curie point depth of the Sulawesi Sea and periphery of the Sulawesi Island,and analyze the distribution characteristics of the geothermal gradient and thermal conductivity.The results show that the average depths of the Moho and Curie surfaces in this area are 18.4 and 14.3 km,respectively,which is consistent with the crustal velocity layer structure in the Sulawesi Basin previously determined by seismic refraction.The average geothermal gradient is 4.96°C(100 m)-1.The oceanic area shows a high geothermal gradient and low thermal conductivity,whereas the land area shows a low geothermal gradient and high thermal conductivity,both of which are consistent with statistical results of the geothermal gradient at the measured heat flow points.The highest geothermal gradient zone occurs in the transition zone from the Sulawesi Sea to Sulawesi Island,corresponding to the spreading ridge of the southward-moving Sulawesi Basin.Comprehensive gravity,magnetic,and geothermal studies have shown a high crustal geothermal gradient in the study area,which is conducive to the subduction initiation.The northern part of the Palu-koro fault on the western side of Sulawesi is likely the location where subduction initiation is occurring.During the process of moving northwest,the northern and eastern branches of Sulawesi Island have different speeds;the former is slow and the latter is fast.These branches also show different deep tectonic dynamic directions;the northern branch tilts north-up and the eastern branch tilts north-down.  相似文献   

3.
The Tarim Basin is the largest, oil-bearing, superimposed basin in the northwest of China. The evolution and tectonic properties of the initial Tarim Basin have been hotly disputed and remain enigmatic. The Neoproterozoic basin is covered by a vast desert and a huge-thickness of sedimentary strata, has experienced multiple tectonic movements, had a low signal to noise ratios(SNRs) of deep seismic reflection data, all of which have posed critical obstacles to research. We analysed four field outcrops, 18 wells distributed throughout the basin, 27 reprocessed seismic reflection profiles with higher SNRs across the basin and many ancillary local 2D and 3D profiles and aeromagnetic data. We found about 20 normal fault-controlled rifting depressions of the Cryogenian and Ediacaran scattered throughout the basin, which developed on the Precambrian metamorphic and crystalline basement. The structural framework is clearly different from that of the overlying Phanerozoic. The rifting depressions consist of mainly half grabens, symmetrical troughs and horst-grabens. From the northeast to southwest of the basin,they are divided into three rifting depression groups with the WNW, ENE, and NW-trends that are mainly controlled by normal faults. The maximum thicknesses of the strata are up to 4100 m. From the Cryogenian to Ediacaran, most of the main inherited faults to active and eventually ceased at the end of the Ediacaran or Early Cambrian, while subsidence centres appeared and migrated eastward along the faults. They revealed that the different parts of the Tarim continental block were in NNE-SSWoriented and NNW-SSE-oriented extensional paleo-stress fields(relative to the present) during the Neoproterozoic, and were accompanied by clockwise shearing. According to the analysis of the activities of syn-sedimentary faults, filling sediments,magmatic events, and coordination with aeromagnetic anomalies, the tectonic properties of the fault depressions are different and are primarily continental rifts or intra-continental fault-controlled basins. The rifting phases mainly occurred from 0.8–0.61 Ga.The formation of the rifting depression was associated with the initial opening of the South Altun-West Kunlun Ocean and the South Tianshan Ocean, which were located at the northern and southern margins of the Tarim Block, respectively, in response to the break-up of the Supercontinent Rodinia and the initial opening of the Proto-Tethys Ocean.  相似文献   

4.
The identification of the origin and source of natural gas is always a difficult and hot issue.Hereinto,the maturity identification is one of the most important scientific problems.Many empirical equations have been established to decipher the relationship between the maturity of gas source rocks and the carbon isotopic composition of natural gas.However,these equations proposed often fail to identify the maturity of the source rocks correctly,which in turn prevents the identification of genetic types and source rocks of the natural gas because the petroliferous sedimentary basins in China are complex and diverse,with multiple sets of source rocks and different thermal history.In this paper,the oil-associated gas from the Permian lacustrine source rocks and the coal-derived gas from the Jurassic source rocks in Junggar and Turpan-Hami basins have been investigated to decipher the relationship between the maturity(vitrinite reflectance)of gas source rocks and the carbon isotopic composition of methane.The equations established areδ13C1=25lgRo-42.5 for oil-associated gas,andδ13C1=25lgRo-37.5 for coal-derived gas.These new equations are suitable for the maturity identification of source rocks in most petroliferous basins,and favorable for the identification of the genetic type and source of natural gas,which is very important to improve the geological theory of natural gas.  相似文献   

5.
The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.  相似文献   

6.
Equilibrium isotope fractionation of thallium(Tl) includes the traditional mass-dependent isotope fractionation effect and the nuclear volume effect(NVE). The NVE dominates the overall isotope fractionation, especially at high temperatures. Heavy Tl isotopes tend to be enriched in oxidized Tl^3+-bearing species. Our NVE fractionation results of oxidizing Tl^+ to Tl^3+ can explain the positive enrichments observed in ferromanganese sediments. Experimental results indicate that there could be0.2–0.3 e-unit fractionation between sulfides and silicates at 1650 ℃. It is consistent with our calculation results,which are in the range of 0.17–0.38 e-unit. Importantly,Tl’s concentration in the bulk silicate Earth(BSE) can be used to constrain the amount of materials delivered to Earth during the late veneer accretion stage. Because the Tl concentration in BSE is very low and its Tl isotope composition is similar with that of chondrites, suggesting either no Tl isotope fractionation occurred during numerous evaporation events, or the Tl in current BSE was totally delivered by late veneer. If it is the latter, the Tl-contentbased estimation could challenge the magnitude of late veneer which had been constrained by the amount of highly siderophile elements in BSE. Our results show that the lateaccreted mass is at least five-times larger than the previously suggested magnitude, i.e., 0.5 wt% of current Earth’s mass. The slightly lighter 205 Tl composition of BSE relative to chondrites is probable a sign of occurrence of Tlbearing sulfides, which probably were removed from the mantle in the last accretion stage of the Earth.  相似文献   

7.
A new portable in situ flume(PISF)for measuring critical bed shear stress(CBSS)was developed in this study.The PISF consists of an open bottom sediment erosion chamber and an electrically-driven pump.Unlike most existing in situ flumes with similar designs,the new PISF does not rely on monitoring the flow conditions or particle density in the sediment erosion chamber;instead,it is a pre-calibrated flume.The calibration was performed by first determining CBSS of various selected sediment samples of known particle size and density(using the law of the wall),based on flow velocity-depth profiles measured in a 6 m straight open-channel flume using a Particle Image Velocimetry(PIV)system.These same particles of known CBSS were then used in the new in-situ flume under controlled lab conditions to obtain a series of calibration curves of CBSS vs.pump electrical power.A wide variety of particle types and sizes(simulated sediments)were used in this two-step calibration procedure to widen CBSS measurement range and simulate cohesive force effects.The size of the PISF is much smaller and more practical than other similar devices as lamellar flow conditions are not required and it can be applied to a wide range of sediment types including cohesive sediments.  相似文献   

8.
Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic earthquake prediction is limited by numerous difficulties. Identifying the temporal and spatial statistical characteristics of earthquake occurrences and constructing earthquake risk statistical prediction models have become significant;particularly for evaluating earthquake risks and addressing seismic planning requirements such as the design of cities and lifeline projects based on the obtained insight. Since the 21 st century, the occurrence of a series of strong earthquakes represented by the Wenchuan M8 earthquake in 2008 in certain low-risk prediction areas has caused seismologists to reflect on traditional seismic hazard assessment globally. This article briefly reviews the development of statistical seismology, emphatically analyzes the research results and existing problems of statistical seismology in seismic hazard assessment, and discusses the direction of its development. The analysis shows that the seismic hazard assessment based on modern earthquake catalogues in most regions should be effective. Particularly, the application of seismic hazard assessment based on ETAS(epidemic type aftershock sequence)should be the easiest and most effective method for the compilation of seismic hazard maps in large urban agglomeration areas and low seismic hazard areas with thick sedimentary zones.  相似文献   

9.
One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for structural damage since its square is proportional to structural stiffness. However,it has been demonstrated in various SHM projects that this indicator is substantially affected by fluctuating environmental conditions. In order to provide reliable and consistent information on the health status of the monitored structures,it is necessary to develop a method to filter this interference. This study attempts to model and quantify the environmental influence on the modal frequencies of reinforced concrete buildings. Daily structural response measurements of a twenty-two story reinforced concrete building were collected and analyzed over a one-year period. The Bayesian spectral density approach was utilized to identify the modal frequencies of this building and it was clearly seen that the temperature and humidity fluctuation induced notable variations. A mathematical model was developed to quantify the environmental effects and model complexity was taken into consideration. Based on a Timoshenko beam model,the full model class was constructed and other reduced-order model class candidates were obtained. Then,the Bayesian modal class selection approach was employed to select the one with the most suitable complexity. The proposed model successfully characterizes the environmental influence on the modal frequencies. Furthermore,the estimated uncertainty of the model parameters allows for assessment of the reliability of the prediction. This study not only improves the understanding about the monitored structure,but also establishes a systematic approach for reliable health assessment of reinforced concrete buildings.  相似文献   

10.
Flood control of the Yangtze River is an important part of China’s national water security.In July 2020,due to continuous heavy rainfall,the water levels along the middle-lower reaches of the Yangtze River and major lakes constantly exceeded the warning levels,in which Taihu Lake exceeded its highest safety water level and some stations of Poyang Lake reached their highest water levels in its history.In August 2020,another huge flood occurred in the Minjiang River and the Jialing River in the upper Yangtze River,and some areas of Chongqing Municipality and other cities along the rivers were inundated,resulting in great pressure on flood control and high disaster losses.The 2020 Yangtze River flood has received extensive media coverage and raised concerns on the roles of the Three Gorges Dam and other large reservoirs in flood control.Here we analyze the changes in the pattern of the Yangtze River flood control by comparing the strategies to tackle the three heavy floods occurring in 1954,1998,and 2020.We propose that the overall strategy of the Yangtze River flood control in the new era should adhere to the principle of"Integration of storage and drainage over the entire Yangtze River Basin,with draining floods downstream as the first priority"by using both engineering and non-engineering measures.On the basis of embankments,the engineering measures should use the Three Gorges Dam and other large reservoirs as the major regulatory means,promote the construction of key flood detention areas,keep the floodways clear,and maintain the ecosystem services of wetlands and shoals.In terms of non-engineering measures,we should strengthen adaptive flood risk management under climate change,standardize the use of lands in flood detention areas,give space to floods,and promote the implementation of flood risk maps and flood insurance policies.The ultimate goal of this new flood control system is to enhance the adaptability to frequent floods and increase the resilience to extreme flood disasters.  相似文献   

11.
Soil is a huge terrestrial carbon pool, which has higher carbon storage than the sum of atmospheric and terrestrial vegetation carbon. Small fluctuations in soil carbon pool can affect regional carbon flux and global climate change. As soil organic carbon plays key roles in soil carbon storage and sequestration, studying its composition, sources and stability mechanism is a key to deeply understand the functions of terrestrial ecosystem and how it will respond to climate changes. The recently-proposed concept of soil Microbial Carbon Pump(MCP) emphasizes the importance of soil microbial anabolism and its contributions to soil carbon formation and stabilization, which can be applied for elucidating the source, formation and sequestration of soil organic carbon. This article elaborates MCP-mediated soil carbon sequestration mechanism and its influencing factors, as well as representative scientific questions we may explore with the soil MCP conceptual framework.  相似文献   

12.
In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.  相似文献   

13.
The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation presented in this paper is suggesting a new strategy to evaluate the seismic serviceability of WSNs,utilizing their operational physical mechanism.On one hand,this method can obtain the seismic serviceability of each node as well as entire WSNs.On the other hand,this method can dynamically reflect the propagation of randomness from ground motions to WSNs.First,a finite element model is established to capture the seismic response of buried pipe networks,and a leakage model is suggested to obtain the leakage area of WSNs.Second,the transient flow analysis of WSNs with or without leakage is derived to obtain dynamic water flow and pressure.Third,the seismic serviceability of WSNs is analyzed based on the probability density evolution method(PDEM).Finally,the seismic serviceability of a real WSN in Mianzhu city is assessed to illustrate the method.The case study shows that randomness from the ground motions can obviously affect the leakage state and the probability density of the nodal head during earthquakes.  相似文献   

14.
The Dynamical-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards(STORM973)project conducted coordinated comprehensive field observations of thunderstorms in the Beijing metropolitan region(BMR)during the warm season from 2014 to 2018.The aim of the project was to understand how dynamical,microphysical and electrical processes interact in severe thunderstorms in the BMR,and how to assimilate lightning data in numerical weather prediction models to improve severe thunderstorm forecasts.The platforms used in the field campaign included the Beijing Lightning Network(BLNET,consisting of 16 stations),2 X-band dual linear polarimetric Doppler radars,and 4 laser raindrop spectrometers.The collaboration also made use of the China Meteorological Administration’s mesoscale meteorological observation network in the Beijing-Tianjin-Hebei region.Although diverse thunderstorm types were documented,it was found that squall lines and multicell storms were the two major categories of severe thunderstorms with frequent lightning activity and extreme rainfall or unexpected local short-duration heavy rainfall resulting in inundations in the central urban area,influenced by the terrain and environmental conditions.The flash density maximums were found in eastern Changping District,central and eastern Shunyi District,and the central urban area of Beijing,suggesting that the urban heat island effect has a crucial role in the intensification of thunderstorms over Beijing.In addition,the flash rate associated with super thunderstorms can reach hundreds of flashes per minute in the central city regions.The super(5%of the total),strong(35%),and weak(60%)thunderstorms contributed about 37%,56%,and 7%to the total flashes in the BMR,respectively.Owing to the close connection between lightning activity and the thermodynamic and microphysical characteristics of the thunderstorms,the lightning flash rate can be used as an indicator of severe weather events,such as hail and short-duration heavy rainfall.Lightning data can also be assimilated into numerical weather prediction models to help improve the forecasting of severe convection and precipitation at the cloud-resolved scale,through adjusting or correcting the thermodynamic and microphysical parameters of the model.  相似文献   

15.
The analysis of wild rice cell structures,tissues,organs,and other morphological characteristics and the development of identification markers for wild rice are the basis for identifying the origins and evolution of prehistorical rice agriculture.However,contemporary wild rice strains are often subject to gene introgression from domesticated rice cultivated by humans during the evolutionary process,which may affect the accuracy of wild rice identification markers.This means that how to eliminate the effects of gene introgression from domesticated rice and other plants on the identification of origin markers,and the purification of the morphological characteristics of wild rice have become critical in research to identify the origin of rice.In this study,we compared and analysed the phytolith morphologies of three common wild rice species(Oryza rufipogon Griff.)from various habitats and one species of ectopically preserved homozygous common wild rice after six consecutive generations of self-crossing.We found that the morphology of the bulliform phytolith in the homozygous wild rice with reduced domestication gene introgression had three significant differences compared with native wild rice:(1)an overall reduction in size(body length decreased from 41.9μm in VLnativeto 38.6μm in VLhomozygous);(2)an increase in the proportion of the long-stalked phenotype,with the ratio of B/A decreasing from 1.22±0.47 in B/Anativeto 0.92±0.30 in B/Ahomozygous;and(3)a decrease in the number of fish-scale decorations,with the proportion of bulliform phytoliths with≥9 fish-scale decorations reduced from 53.4%in native wild rice to 37.2%in homozygous wild rice.Thus,this study provides a reliable reference for the identification of rice origins using rice phytolith morphology.  相似文献   

16.
The studies on the structure and physical properties of the mantle by Chinese geophysicists from 2003 to 2007 are reviewed in this report. It mainly contains studies on the seismic velocity structure of the mantle,anisotropy of the mantle,mantle discontinuities,mantle convection and the physical properties of mantle. The review concerns mainly the contents,the methods used and the results of the studies. It can be found that new progress in the study on the structure and physical properties of mantle has been made in the last four years in China. In some preexis-tent areas much progress has been made,advanced methods have been adopted,extensive international co-operation has been conducted in many ways,and the scope of the co-operation has gradually expanded. More-over,some new fields appear as well.  相似文献   

17.
Soil erosion from chestnut forests is one of the most important factors causing land degradation in the Yanshan Mountain Region. A 2-year field study was done to compare the effects on erosion of a control plot(CP), a repaired and maintained horizontal ditch built with an engineering baffle every 6 m(MP 1),and a repaired and maintained horizontal ditch built with an engineering baffle every 8 m(MP 2). The results showed that the slope runoff of chestnut forests was influenced by rainfall characteristic factors.No single rainfall characteristic factor showed dominance for hill slope runoff. The runoff reduction effect of the partition-coordinated erosion control measures(MP 1 and MP 2) was substantial for chestnut forests under high rainfall intensity conditions. However, the runoff reduction efficiency was higher under the conditions of heavy rainfall and low average rainfall intensity than for storms with higher intensity and lower total rainfall. The reduction effect of the partition-coordinated erosion control measures on the runoff and sediment yield of chestnut forest slopes was MP 2 > MP 1 > CP. The runoff reduction rate and erosion reduction rate of MP 2 reached 61.70% and 97.41%, respectively, and that for MP 1 was 54.15% and 85.31%, respectively. Therefore, after a comprehensive comparison, MP 2 was determined to be more effective for soil erosion control for a sloping chestnut forest.  相似文献   

18.
It is generally believed a variation of 3He/4He isotopic ratios in the mantle is due to only the decay of U and Th,which produces4 He as well as heat.Here we show that not only3He/4He isotopic ratios but also helium contents can be fractionated by thermal diffusion in the lower mantle.The driving force for that fractionation is the adiabatic or convective temperature gradient,which always produces elemental and isotopic fractionation along temperature gradient by thermal diffusion with higher light/heavy isotopic ratio in the hot end.Our theoretical model and calculations indicate that the lower mantle is helium stratified,caused by thermal diffusion due to*400℃temperature contrast across the lower mantle.The highest3He/4He isotopic ratios and lowest He contents are in the lowermost mantle,which is a consequence of thermaldiffusion fractionation rather than the lower mantle is a primordial and undegassed reservoir.Therefore,oceanicisland basalts derived from the deepest lower mantle with high3He/4He isotopic ratios and less He contents—the long-standing helium paradox,is solved by our model.Because vigorous convection in the upper mantle had resulted in disordered or disorganized thermal-diffusion effects in He,Mid-ocean ridge basalts unaffected by mantle plume have a relatively homogenous and lower!3He/4He isotopic compositions.Our model also predicts that 3He/4He isotopic ratios in the deepest lower mantle of early Earth could be even higher than that of Jupiter,the initial He isotopic ratio in our solar system,because the temperature contrast across the lower mantle in the early Earth is the largest and less4 He had been produced by the decay of U and Th.Moreover,the early helium-stratified lower mantle owned the lowest He contents due to over-degassing caused by the largest temperature contrast.Consequently,succeeding evolution of the lower mantle is a He ingassed process due to secular cooling of the deepest mantle.This explains why significant amount of He produced by the decay of U and Th in the lower mantle were not released,another long-standing heat–helium paradox.  相似文献   

19.
Based on deep geophysical detections, we have reconstructed the crustal structure from the eastern margin of the Tibetan Plateau to the Jiangnan-Xuefeng orogenic belt. The results suggest that the Yangtze Block was overthrusted by crustal materials in its NW direction from the eastern Tibetan Plateau but in its SE direction from the Jiangnan orogen. These overthrusting effects control the crustal structure from the western Sichuan to the western area of the Jiangnan orogen-Xuefeng orogenic belt. The eastward extruded materials from the eastern Tibetan Plateau were blocked by the rigid basement in the Sichuan Basin, where upper-middle crust was overthrusted whereas the lower crust was underthrusted beneath the Sichuan Basin. The underthrusted unit was absorbed by crustal folding, shortening and thickening in the Yangtze Block, forming the Xiongpo and Longquan Mountains tectonic belts and resulting in the NW-directed thrusting of the Pujiang-Chengdu-Deyang fault, and the western hillsiden fault in the Longquan Mountain. These results provide resolution to the controversy where the eastward extrusion material from the Qinghai-Tibet Plateau had gone. Overall, that Yangtze Block was subjected to thrusting of the crustal materials from the orogenic belts over its both sides. This finding has implications for the study of the intracontinental orogenic mechanism in South China, the reconstruction of tectonic evolutionary history and the kinematics processes during the lateral extrusion of the Tibet Plateau.  相似文献   

20.
莱昂·诺波夫(1925~2011),是一位对物理学、地震学和音乐领域做出贡献的国际著名科学家,于2011年1月20日在妻子和3个孩子的陪伴下于家中辞世。莱昂·诺波夫1949年在加州理工学院获得物理学和数学博士学位,翌年开始在洛杉矶加州大学任教。1960年洛杉矶加州  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号