首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of sediment stability in the field is challenging because bed shear stress (BSS), a determining factor of sediment erosion, can’t easily be directly measured. To tackle this challenge and reliably assess sediment erodibility in a fast flowing river, a standalone underwater camera system and a new insitu flume (ISF) were developed and applied in this study. The camera system was used to record sediment movement and the new ISF was used for measuring critical bottom shear stress (CBSS). The camera can be deployed alone in water to record videos or take pictures with light emitting diode (LED) lighting and flexible schedule settings. The ISF is based on the concept that the amount of force needed to erode the same particle under different flow conditions should be similar. Two high resolution Acoustic Doppler Current Profilers (ADCP) also were deployed in the field to collect velocity-depth profiles which are used by conventional methods to calculate BSS with the law of the wall. The sediment erodibility was then assessed based on the comparison between the obtained CBSS and BSS and then further verified with the recorded observations from the deployed camera. The results reveal that the widely used conventional method can produce large uncertainties and is not adequate to provide meaningful conclusion under these conditions.  相似文献   

2.
I.INTRODUCTIONToconstructanidealmeasuringdeviceforin-situstUdiesincomparisontolaboratorydeVicesastrongeremphasishastobesetonthehandlingoftheSystemandtheresistanceunderwater,whichaughtbethereasonwhynotmanyapproachesonrealin-situinvestigationwerecaaccedoutlately.Sincetheedupandtheconstructionseemtodemandahigheramountofcostsandeffort,quasiin-siamstudieswerecAnedoutrefetringtoanundisturbedsedimentsampledrawnfromthesedimentbedoutofthewaterintothesamplingchamberofameasuringdevice.Evenifthisisa…  相似文献   

3.
A spatially averaged numerical model was developed to describe the erosion of cohesive sediment. Together with known empirical relations, the model comprises a new formulation for resuspension due to fish activity. Experiments on erosion of natural sediments in the annular flume at Aachen University are used for model calibration. Empirical coefficients were evaluated with genetic algorithms to achieve the best agreement between the model results and the experimental data. The presented model shows sufficient flexibility to account for various sediment properties, including different sediment sources, natural and artificial contaminants, presence or absence of aquatic organisms, and results in an average coefficient of determination, R2 = 90.5% between the model results and the experimental data. Model validation allows it to be assumed that different contaminants affect bed properties differently. Fish activity plays an essential role in correct resuspension prediction. Further sediment erosion experiments with carefully chosen conditions will allow a more comprehensive model evaluation. The presented model is intended to serve as a building block in the development of a hydraulic-sediment-biota model within the W3-Hydro: Water Quality Event Detection for Urban Water Security and Urban Water Management Based on Hydrotoxicological Investigations project that aims to improve the knowledge concerning bioavailability, transport, fate, and effects of contaminants on the aquatic environment.  相似文献   

4.
A self-contained, field-portable recirculating seawater flume was designed and constructed in order to measure in situ the erodibility of cohesive estuarine muds. The flume can be easily deployed by one person and is designed for subaerial use only. Bed shear stresses up to 0.6 Nm−2 can be generated by the flume. Rates of sediment erosion are assessed in terms of the mass of particulate material eroded with time. Flow calibrations yield a drag coefficient (CD) of 4.5 × 10−3 which enables single mid-depth velocity measurements to be related directly to the imposed bed stress. Water motions within the flume are complex, but secondary (radial) circulations are not considered sufficiently competent to dominate sediment erosion. Stratification effects due to high levels of suspended sediment ( 1.5 gl−1) are negligible. However, the drag-reducing properties of the sediment suspension are uncertain.  相似文献   

5.
1 INTRODUCTIONIn recent years, the concePt of long-term sustained use of reservoirs has been addressed because areservoir is very much considered to be a nonrenewable resource (Morris and Fan, l998). Technically,many options for reservoir sedAnentation control can be utlized to pursue the sustainable develoPment ofwater resources. In general, reduction of incoming sedimen yields from watersheds is often emPloyedin conjunction with hydraulic methods such as flushing or density currnt vot…  相似文献   

6.
Five erosion devices were compared using five intertidal estuarine sites covering a range of sediment stability from newly settled mud to very cohesive mud at the margins of a saltmarsh. The erosion devices use different methods of fluid shearing from horizontal currents/bed shear stresses to vertical water jets, and have different ‘footprint’ areas. The devices included: (1) the annular flumes (AFs—diameter 64 cm; footprint area 0.17 m2) of the Plymouth Marine Laboratory (PML); (2) PML's mini-annular flume (MAF—diameter 19 cm; area 0.026 m2); (3) the annular mini-flume (AMF—diameter 30.5 cm; area 0.032 m2) of the National Oceanography Centre Southampton (NOC); (4) NOC's Cohesive Strength Meter (CSM—diameter 3 cm; area 0.0007 m2); (5) NOC's EROMES (ER—diameter 10 cm; area 0.0079 m2). The quantification of threshold shear stress for bed erosion (τe) and sediment erosion rate was complemented by the measurement of physical, chemical and biological properties of the sediment (grain size, bulk density, water content, organic content, chlorophyll a, carbohydrates, macrofauna). The results demonstrated a significant correlation (r2=0.98) between the PML AF (laboratory measurement of undisturbed cored sediment) and PML MAF (in situ) for measurement of erosion thresholds for bed sediment. However, there were no significant correlations between AFs, the CSM and EROMES. There were no consistent correlations with physical or biological sediment properties due to the spatially unrelated sites and the marked differences in benthic assemblages. The sources of differences and the lack of correlations between erosion devices were due to several factors, including operational procedures (e.g., sediment resuspension during filling with water), definition of erosion threshold, the nature of the force applied to the bed, and method of calibration. In contrast to the CSM and EROMES, both types of AFs were able to record significant differences in the erodability of soft sediments from four sites. This indicates that the CSM and EROMES may not be very effective at measuring the differences in erosion thresholds of soft estuarine sediments.  相似文献   

7.
《国际泥沙研究》2022,37(6):833-846
Sediment transport has been extensively studied. There is still a need to learn more about the mechanisms that make bed particles move, which is caused by turbulent flow in the low transport stages (above the motion threshold and below continuous transport). This work is focused on the use of an advanced tool to obtain a better perception of sediment transport dynamical methods: an instrumented particle equipped with a micro-electromechanical systems (MEMS) sensor. Particle transport experiments were carried out in a laboratory flume under a variety of well-controlled above-the-threshold-of-motion flow conditions. By using sensor data, the kinetic energies were calculated with different flow rates and particle densities (mimicking different types of sediments sizes) to generate the probability distribution functions (PDFs) of particle transport features, like the total kinetic energy of particles, which provided information about particle interaction with the bed surface during its motion. The energy transfer efficiency was also studied, which can link the rate of energy transferred from the flow to the particle transport, so it can determine how efficiently a flow can transfer energy to the particle and how it affects the magnitude of sediment transport. In general, the instrumented particle response by a series of experiments showed consistent and satisfactory results and demonstrated its capability to record inertial dynamics because of flow turbulence at low cost. These experiments used different particle sizes and densities than those found in real-world sediments because of sensor size and lab limitations. They do, however, provide a framework and trends that others can use to do more research into bed load transport rates in built canals and natural rivers.  相似文献   

8.
1 wrRonvCTIoxToday it is widely accepted that the PrOcesses involved in cohesive sediment transpoft are stronglyinfluenced by the biological achvity of planctic (flocculation and sedimentahon) and benthic(consolldation and erosion) orgedsms (SPOrk et al. l997; PrOchnow et al. l999). Furthennre it can notbe neglected that particulary the ProCesses of sediment aging in teW of comPosition, pore-water content,stickiness of particles and aggregates and threshold of sediment motion are affected…  相似文献   

9.
The erodibility of intertidal sediments is an important factor affecting coastal erosion.In July and October 2008,in situ measurement of erodibility of the surficial sediment were conducted using a recirculating flume at 20 tidal flat experiment sites along the seashore of the Yellow River delta.At the same time,the characteristics of sand ripples and biogenic features on the tidal flat were observed and the physical-mechanical sediment properties such as bulk density,water content,grain size distribution,plasticity,penetration resistance,shear strength and compressibility,were measured.By field measurement,it is obtained that the critical erosion shear stress of the surficial sediment on the tidal flat varies between 0.088 Pa and 0.254 Pa.The factors influencing sediment erodibility are complicated because of physical and biological reworking after the sediment deposited.There’s a positive correlation between shear strength and critical erosion shear stress.The burrowing crabs’ activities changed the sediment microtopography and made the sediment have greater roughness,and that is one possible reason for the higher erodibility.The formation of scour pits on the tidal flat correlates with the heterogeneous erodibility of the surficial sediment.  相似文献   

10.
1 mTsonvCTIoxTIansport of fine cOhesive sedinds inevitably leads to the develoPment of sediment deposits inreservoirs or zones with small flow velocihes in lowland rivers. Such sediment dePosits often conshtUte aconsiderable ecological danger, as cOhesive sediInnts have the ability to bind POllutants like heavymetals, polycyclic aromatic hydrocrtons or chlorinated hydrocaIbons (F6f8iner, l989). In the case of anextreme hydraUlic event like a flood or a reservoir dePlehon, erosion of cone…  相似文献   

11.
Coastal erosion is an immense economic and social problem that has been receiving increased attention in recent years. A number of devices have been developed to determine the sediment stability in coastal areas: laboratory and field flumes; a range of different erosion devices; shear vanes and fall cone penetrometers. The cohesive strength meter (CSM) erosion device was developed to determine in situ the temporal and spatial variations in the erosion threshold of muddy intertidal sediments. Technological developments have enabled considerable improvements to be made to the original design over the last 15 years.  相似文献   

12.
This paper presents an erosion model, ARMOUR, which simulates time‐varying runoff, erosion, deposition and surface armour evolution down a hillslope either as a result of a single erosion event or as the cumulative impact of many events over periods up to decades. ARMOUR simulates sediment transport for both cohesive and non‐cohesive soil and dynamically differentiates between ‘transport‐limited’ and ‘source‐limited’ processes. A variety of feasible processes for entrainment of different size classes can be modelled and evaluated against data. The generalized likelihood of uncertainty estimation (GLUE) technique was used to calibrate and validate ARMOUR using data collected during rainfall simulator experiments at two contrasting sites: (1) non‐cohesive stony sediments at Ranger Uranium Mine, Northern Territory, Australia; and (2) cohesive silty sediments at Northparkes Gold Mine, NSW, Australia. The spatial and temporal variations of model predictions within the individual runoff events showed that some entrainment processes could not model the spikes in concentration and subsequent depletion, while the hiding model of Andrews and Parker best simulated the concentration trends for both calibrated and independent runoff events. ARMOUR also successfully captured the coarsening of the surface material, though small, over the duration of the rainfall simulator trials. This was driven by the depletion of the finest size class of the soil. For a constant discharge, ARMOUR simulated higher sediment flux at the start of the storm with the sediment flux and concentration diminishing with time. For natural rainfall a power law relationship between sediment flux and discharge was observed. The calibration exercise showed that sediment concentration and discharge alone are insufficient to calibrate all aspects of the physics, in particular the armour depth. This appears to be because the armouring during the short duration events is driven by depletion of the finest classes of the sediments (diameters less then 62·5 mm), which are not normally measured. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Laboratory experiments were performed with rain of uniform drop size (2·7 mm, 5·1 mm) impacting flows over non‐cohesive beds of uniform sized sand (0·11–0·9 mm) and coal (0·2–0·9 mm) particles with flow velocities (20 mm s?1, 40 mm s?1) that were insufficient for the flow to entrain the particles without the aid of raindrop impact. Measurement of particle travel distance under rain made up of 2·7 mm drops confirmed a theoretical relationship between settling velocity and the distance particles travel after being disturbed by drop impact. Although, in theory, a relationship between settling velocity and particle travel distance exists, settling velocity by itself was unable to account for the effect of changes in both particle size and density on sediment discharge from beds of uniform non‐cohesive material. Particle density was also a factor. Further study of how particle characteristics influence sediment discharge will aid modelling of the impact of the soil in process‐based models of erosion by rain‐impacted flow. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, we present a novel approach to measure fundamental processes of cohesive sediment erosion. The experimental setup consists of a laboratory erosion flume (SETEG) and a photogrammetric method to detect sediment erosion (PHOTOSED). Detailed data are presented for three erosion experiments, which were conducted with a natural non-cohesive/cohesive sediment mixture at increasing sediment depths (4, 8, 16 cm). In each experiment, the sediment was exposed to a set of incrementally increasing shear stresses and the erosion was measured dynamically, pixel-based, and approximate to the process scale given the resolution of PHOTOSED. This enables us to distinguish between (i) individual emerging erosion spots caused by surface erosion and (ii) large holes torn open by detached aggregate chunks. Moreover, interrelated processes were observed, such as (iii) propagation of the erosion in the longitudinal and lateral direction leading to merging of disconnected erosion areas and (iv) progressive vertical erosion of already affected areas. By complementing the (bulk) erosion volume profiles with additional quantitative variables, which contain spatial information (erosion area, specific deepening, number of disconnected erosion areas), conclusions on the erosion behaviour (and the dominant processes) can be drawn without requiring qualitative information (such as visual observations). In addition, we provide figures indicating the spatio-temporal erosion variability and the (bulk) erosion rates for selected time periods. We evaluate the variability by statistical quantities and show that significant erosion is mainly confined to only a few events during temporal progression, but then considerably exceeds the time-averaged median of the erosion (factors between 7.0 and 16.0). Further, we point to uncertainties in using (bulk) erosion rates to assess cohesive sediment erosion and particularly the underlying processes. As a whole, the results emphasise the need to measure cohesive sediment erosion with high spatio-temporal resolution to obtain reliable and robust information. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

15.
《国际泥沙研究》2020,35(1):15-26
Research on the critical shear stresses for erosion and deposition for cohesive sediment has attracted substantial attention from both engineering and theoretical viewpoints due to their importance in sediment transport theory.Previous studies have proposed a large number of empirical and semiempirical methods to estimate the critical erosion and deposition shear stress,but comparative analyses and validation of the existing methods are still lacking,leaving questions regarding the applicability ranges of the methods.The current paper evaluates the performance and applicability range of five critical erosion shear stress methods derived from different hypotheses on sediment transport for flume experiments and natural tidal rivers using a process-based model.In addition,the effect of the critical deposition shear stress on sediment transport is investigated.The results show that the different critical erosion shear stress methods yield distinctly different prediction results,and their performance and applicability ranges are discussed by comparing their predictions with measured sediment concentrations from the Shenzhen River and measured geometric changes from the Partheniades' flume experiment.The hiding and exposure effect has been recognized as a crucial factor in the incipient motion of sediment on nonuniform beds.A sensitivity analysis of selective deposition and continuous deposition justifies the existence of the critical deposition shear stress.The current study highlights the performance and applicability ranges of the existing critical shear stress methods in sediment transport modeling for uniform and nonuniform beds,which will enrich understanding of the underlying mechanisms of erosion and deposition of cohesive sediment.  相似文献   

16.
Influence of wave on sediment resuspension and nutrients release from sediments, collected from Lake Taihu and Lake Chaohu, was studied in flume experiments. Under strong-wave conditions, concentrations of suspended solids (SS), total phosphorus (TP) and dissolved total phosphorus (DTP) in overlying water were increased significantly following the sediments re-suspension. During the experiments on sediments of Lake Taihu and Lake Chaohu, TP concentrations increased 6 times and 3 times, and DTP concentration increased 100% and 70% more than it in presuspension, respectively. Concentration of soluble reactive phosphorus (SRP) of experiment on sediment of Lake Taihu increased 25%. During the massive sediment suspension, the dissolved phosphorus in pore water and much of the phosphorus adsorbed by the sediment particles were released into overlying water. The phenomena in this wave flume experiment are quite similar to the situation observed in situ of Lake Taihu. The critical wave stresses of sediment re-suspension are nearly equal. The change of concentrations of SS, TP, and SRP was the same as that in situ situation. This study showed that concentrations of TP and SRP in lake water could be increased significantly by wave disturbance. Phosphorus release was significantly enhanced by wave disturbance at the beginning of massive sediment re-suspension, but decreased later.  相似文献   

17.
《国际泥沙研究》2020,35(6):563-575
Erosion of mixed cohesive and noncohesive sediments is studied using the erosion test instrument SEDFlume. The sediment mixtures are composed of well-sorted quartz sand (0.25–0.5 mm) and one of the three used muds: kaolinite, kaolinite-bentonite and Mississippi River muds. The mud contents cover from 0 to 100%. The measured data of erosion rate and bed shear stress are used to examine the segmented linear, nonlinear, and exponential erosion models. The parameters of each erosion model are related to the physical properties of sediment mixtures, including clay fraction, mud fraction, mixture dry density, and mud dry density. It is found that the three models can fit well with the data, and their parameters have strong relations with the mud fraction and mud dry density, to a less extent with the clay fraction, but not with the mixture dry density.  相似文献   

18.
The complexity of sediment dynamics in aquatic systems can be better understood by applying numerical models. The development of a comprehensive morphological model is presented in this paper.The model aims to predict the sediment transport and bed evolution in natural systems composed of different sediment types. The morphological model was implemented in MOHID, a modelling system that solves the three-dimensional hydrodynamics and advection-diffusion transport of suspended sediments. Multiple sediment classes were taken into account(non-cohesive and cohesive) considering the effects of sediment mixtures and bed consolidation on resistance to erosion. To represent bottom stratigraphy, the bottom column can be divided into several layers. The key points of the simulated processes are discussed in this paper. Model results are assessed in six test cases through comparison with analytic solutions or experimental data. The outcomes demonstrate the model's capacity to simulate the transport dynamics of non-cohesive and cohesive sediments. The speed up of morphological changes by an acceleration factor permitted modelling bed evolution for long time periods.Moreover, a test case for the Tagus Estuary demonstrated the model's capacity for generating realistic sediment distribution based on the local hydrodynamic conditions. Limitations in the availability of bed composition data can be overcome by considering a warm-up run to provide realistic initial conditions for further predictions of morphological developments.  相似文献   

19.
20.
The role of mud erosion under waves in governing cohesive sediment transport in estuarial and coastal waters is well known. A laboratory study was conducted in order to elucidate the mechanism by which soft muds erode under progressive waves in a flume. Two types of cohesive sediment were used, a commercial kaolinite and an estuarial mud. Beds were formed by pouring in a pre-prepared sediment-water slurry and allowing the deposit to consolidate for a period ranging from 2 to 14 days. A multi-layered hydrodynamic model, which considers the mud to be viscoelastic, has been developed and used to evaluate the bed shear stress at the oscillating mud-water interface. The viscoelastic property of the mud has been confirmed by rheological measurements, and model results on velocity, pressure and wave attenuation verified against flume data. Concentration profiles indicate a distinct evolutionary pattern resulting in a highly stratified suspension. Just above the bed, a thin layer of fluid mud is generated. Above this layer, the suspension concentration is significantly lower. This two-layered feature of the concentration profile is related to the oscillatory response of the mud and water layers, and the associated momentum exchange and mass diffusion characteristics. An expression relating the rate of erosion to the bed shear stress in excess of bed shear resistance has been developed. Generation of fluid mud during erosion is a significant feature of the role of waves over mud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号