首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
北京地区闪电活动与气溶胶浓度的关系研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2015—2017年北京闪电定位网(BLNET)总闪资料与35个自动空气质量监测站PM2.5数据,分析了北京地区(39.5°N—41.0°N,115.0°E—117.5°E)夏季(6—8月)闪电活动与PM2.5的时空分布特征,同时针对117次雷暴天气,探讨了气溶胶浓度变化对闪电活动的可能影响.结果表明:PM2.5浓度及总闪密度均呈现自西北向东南升高的空间分布特征.闪电峰值在污染背景下出现的时间(19∶00LT)晚于清洁背景下(15∶00LT)约4h,且总闪百分比(~20%)可达清洁背景下(~9%)的两倍.对雷暴前1~4h的PM2.5浓度与时间窗(12∶00—22∶00LT)内总闪数目的中位数进行相关分析,发现PM2.5浓度低于130μg·m-3时,PM2.5与总闪数存在明显正相关,此时气溶胶可能通过影响云微物理过程进而影响雷暴的对流发展,增强闪电活动;PM2.5大于150μg·m-3时,总闪数随PM2.5浓度的增加呈减少趋势,可能的原因是高气溶胶浓度下地面太阳辐射显著下降,对流活动受到抑制,导致闪电活动减少.当PM2.5浓度在130~150μg·m-3时,两者关系不明显.  相似文献   

2.
利用16年(1998-2013)的热带降水测量任务卫星(TRMM)降水雷达和闪电成像仪等多传感器观测资料,分析了亚洲季风区内雷暴和强雷暴的空间分布、季节变化及日变化等气候特征.文中取闪电数大于1的雷达降水特征为雷暴,并将闪电频数在前10%的雷暴定义为强雷暴.结果表明:雷暴活动主要集中在陆地及近海区域,陆地与海洋上的雷暴密度之比约为4.4:1,强雷暴密度之比约为7.4:1.0-10°N纬度带内雷暴数占总雷暴的比例最大(占总数的31.7%),而强雷暴则在20°N-30°N区间最为活跃(34.5%).雷暴与闪电密度的空间分布在低纬度区域(0-30°N)较为一致,但在中纬度地区(30°N-36°N)呈现出不同的分布特征,即从西部的青藏高原向东部的江淮流域,雷暴密度逐渐减少但闪电密度逐渐增加;而强雷暴与闪电密度的空间分布基本一致.受亚洲夏季风活动影响,低纬度地区强雷暴更容易发生在春季,强中心位于喜马拉雅山南麓东端,次中心位于中南半岛,而中纬度地区在夏季最为活跃,强中心和次中心则分别位于喜马拉雅山南麓西端和中国江淮流域.陆地上雷暴主要集中在午后至傍晚,少数区域受局地环流和气象条件的影响夜雷暴活动频繁,而海洋上雷暴更易发生在午夜至清晨.  相似文献   

3.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges.A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

4.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges. A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

5.
Lightning Applications in Weather and Climate Research   总被引:1,自引:0,他引:1  
Thunderstorms, and lightning in particular, are a major natural hazard to the public, aviation, power companies, and wildfire managers. Lightning causes great damage and death every year but also tells us about the inner working of storms. Since lightning can be monitored from great distances from the storms themselves, lightning may allow us to provide early warnings for severe weather phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. Lightning itself may impact the climate of the Earth by producing nitrogen oxides (NOx), a precursor of tropospheric ozone, which is a powerful greenhouse gas. Thunderstorms themselves influence the climate system by the redistribution of heat, moisture, and momentum in the atmosphere. What about future changes in lightning and thunderstorm activity? Many studies show that higher surface temperatures produce more lightning, but future changes will depend on what happens to the vertical temperature profile in the troposphere, as well as changes in water balance, and even aerosol loading of the atmosphere. Finally, lightning itself may provide a useful tool for tracking climate change in the future, due to the nonlinear link between lightning, temperature, upper tropospheric water vapor, and cloud cover.  相似文献   

6.
对观测资料的分析表明,甘肃地区和海南岛的地闪特征具有很大差异。海南岛负地闪(P型)首次回击前的电场变化波形与国外的报道类似,而甘肃地区仅有30%左右的负地闪属P型,约70%的负地闪首次回击前的电场变化波形具有明显的云闪特征(C型负地闪)。海南岛没有发现正地闪,甘肃地区有正地闪。该两地区存在两类电结构不同的雷暴,两类雷暴中地闪放电过程及特征的很大差异,说明我国的防雷规范及措施很可能需要考虑雷暴的地区差异性。  相似文献   

7.
青藏高原那曲地区雷电特征初步分析   总被引:32,自引:3,他引:29       下载免费PDF全文
通过对2002年夏季青藏高原那曲地区雷暴过程及闪电观测资料的初步分析,发现该地区雷暴电荷结构具有多样性和复杂性,地闪明显偏少. 对高原地闪的一些基本特征参量的统计分析表明,无论正地闪还是负地闪梯级先导前都具有持续时间较长的云内放电过程,地闪以单次回击为主. 与中低纬度地区相比,高原地闪中正地闪比例明显要高,为33髎;负地闪为67髎;正、负地闪回击后常常伴随短时间的连续电流.  相似文献   

8.
Lightning discharges monitored by the SAFIR network system in Poland have been additionally identified over the 100×100 km area near Warsaw by single-point independent recordings of electric field and Maxwell current rapid changes. The data collected in summer thunderstorm days of 2002 showed some untypical properties of the lightning discharges which are rarely observed. Especially remarkable was a number of ground multi-stroke flashes with the return strokes (RS) which transported to the earth charges of opposite signs. Bipolar flashes (BF) of this kind were mostly involved in the events in which the nearby intracloud (ic) and cloud-to-ground (c-g) discharges were very closely associated in time. Events of such a close collocation of two different types of lightning discharges, previously called the complex lightning discharge events (CLDE), were quite often observed during summer thunderstorms in Poland. The events of this kind, i.e. 8 flashes, identified by the SAFIR detection system as BF’s present the multiple stroke flashes of the mean horizontal separation distance between striking points of particular RS equal to (2.8 ± 2.1) km and of the mean time interval between strokes of (46.8 ± 74.4) ms. The time separation between the observed BF and the adjacent ic flashes was from 0.1 to 335 ms, and horizontal separation distance between them ranged from 1.8 to 14.5 km. The multiplicity of the recorded BF’s ranged from 2 to 4 strokes. Four of these BF’s followed the ic discharge, but the other three preceded the ic and one was alone with no close ic.  相似文献   

9.
In recent years, locating total lightning at the VLF/LF band has become one of the most important directions in lightning detection. The Low-frequency E-field Detection Array(LFEDA) consisting of nine fast antennas was developed by the Chinese Academy of Meteorological Sciences in Guangzhou between 2014 and 2015. This paper documents the composition of the LFEDA and a lightning-locating algorithm that applies to the low-frequency electric field radiated by lightning pulse discharge events(LPDEs). Theoretical simulation and objective assessment of the accuracy and detection efficiency of LFEDA have been done using Monte Carlo simulation and artificial triggered lightning experiment, respectively. The former results show that having a station in the network with a comparatively long baseline improves both the horizontal location accuracy in the direction perpendicular to the baseline and the vertical location accuracy along the baseline. The latter results show that detection efficiencies for triggered lightning flashes and return strokes are 100% and 95%, respectively. The average planar location error for return strokes of triggered lightning flashes is 102 m. By locating LPDEs in thunderstorms, we find that LPDEs are consistent with convective regions as indicated by strong reflectivity columns, and present a reasonable distribution in the vertical direction.In addition, the LFEDA can reveal an image of lightning development through mapping the channels of lightning. Based on three-dimensional locations, the vertical propagation speed of the preliminary breakdown and the changing trend of the leader's speed in an intra-cloud and a cloud-to-ground flash are investigated. The research results show that the LFEDA has the capability for three-dimensional location of lightning, which provides a new technique for researching lightning development characteristics and thunderstorm electricity.  相似文献   

10.
One of the costliest natural hazards around the globe is flash floods, resulting from localized intense convective precipitation over short periods of time. Since intense convective rainfall (especially over the continents) is well correlated with lightning activity in these storms, a European Union FP6 FLASH project was realized from 2006 to 2010, focusing on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project, 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms, lightning data were used together with rainfall estimates in order to understand the storms?? development and electrification processes. In addition, these case studies were simulated using mesoscale meteorological models to better understand the local and synoptic conditions leading to such intense and damaging storms. As part of this project, tools for short-term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long-term forecasts (a few days) of the likelihood of intense convection, were developed and employed. The project also focused on educational outreach through a special Web site http://flashproject.org supplying real-time lightning observations, real-time experimental nowcasts, medium-range weather forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented, long-range regional lightning networks can supply valuable data, in real time, for warning the public, end-users and stakeholders of imminent intense rainfall and possible flash floods.  相似文献   

11.
The purpose of this study was to understand the reasons why frequent positive cloud-to-ground (+CG) flashes occur in severe thunderstorms. A three-dimensional dynamics-electrification coupled model was used to simulate a severe thunderstorm to permit analysis of the conditions that might easily cause +CG flashes. The results showed that strong updrafts play an important role in the occurrence of intracloud flashes. However, frequent +CG flashes require not only strong updrafts but also strong downdrafts in the lower cloud region, conditions that correspond to the later phase of the mature stage and the period of the heaviest solid precipitation of a thunderstorm. During this stage, strong updrafts elevated each charge area in the updraft region to a higher level, which resulted in an inverted tripole charge structure. A wide mid-level region of strong positive charge caused largely by positively charged graupel, presented in the middle of the updraft region because of a non-inductive ice-ice collisional charging mechanism. The charge structure in the downdraft region was consistently more complex and revealed several vertically stacked charge regions, alternating in polarity. Much of the graupel/hail outside the updrafts was lowered to cloud-base by strong downdrafts. In this area, the graupel/hail was charged negatively because of the transportation of negatively charged graupel/hail from higher regions of negative charge in the updrafts, and via the inductive charging mechanism of collisions between graupel/hail and cloud droplets at the bottom of the cloud. Consequently, a large region of negative charge formed near the ground. This meant that +CG flashes were initiated more easily in the lower inverted dipole, i.e., the middle region of positive charge and lower region of negative charge. Frequent +CG flashes began almost synchronously with dramatic increases in the storm updrafts, hail volume, and total flash rate. Therefore, the occurrence of +CG flashes appears a good indicator of storm intensification and it could have some use as a predictor of severe weather in the form of hail.  相似文献   

12.
Lightning activity and precipitation structure of hailstorms   总被引:1,自引:0,他引:1  
By using the cloud-to-ground (CG) lightning location data from the lightning detection network of He- nan Province, surface Doppler radar data and standard orbit data of PR, TMI and LIS on TRMM satellite, the spatial and temporal characteristics of CG lightning flashes in 10 severe hailstorms are analyzed. The results show that the percentage of CG lightning in these hailstorms is high with an average value of 45.5%. There is a distinct increase in CG flash rate during the rapid development stage of hailstorms. The hailstone falling corresponds to an active positive flash period, and the increase of CG flash rate is generally accompanied with a decrease of –CG flash rate. The flash rate declines rapidly during the dissipating stage of hailstorms. The precipitation structure and lightning activity in two typical hail- storms are studied in detail. It is found that strong convective cells with reflectivity greater than 30dBZ mainly are situated in the front region of hailstorms, whereas the trailing stratiform region is in the rear part of the hailstorms. The maximum heights of echo top are higher than 14 km. Convective rain con- tributes much more rainfall to the total than stratiform rain, and the convective rain takes about 85% and 97% of the total in the two cases, respectively. Total lightning in the hailstorms is very active with the flash rate up to 183 fl/min and 55 fl/min, respectively. The results also indicate that most lightning flashes occurred in the echo region greater than 30 dBZ and its immediate periphery. The probability of lightning occurrence is 20 times higher in the convective region than in the stratiform region. The result suggests that the lightning information is helpful to the identification of convective rain region. The linear relationship between flash rate and ice water content is disclosed primarily.  相似文献   

13.
Based on the VHF lightning locating system,a three-dimensional-space cell-gridded approach is used to extract the lighting channel and calculate the length of the channel.Through clustering of the located radiation sources and then extracting the lightning channel,it can accurately obtain the length of the channel.To validate the feasibility of the approach,a simulation experiment is designed,and it shows the length error is no more than 10%.The relationship between the NO production of per unit arc length and atmospheric pressure obtained in laboratory is applied to the NOX production of per unit flash length at different altitudes in this paper.The channel length and the NOX production of 11 negative cloud-to-ground flashes and 59 intracloud flashes in an isolated thunderstorm in the northeastern Qinghai-Tibet Plateau are calculated.The results show that the average channel lengths of per cloud-to-ground and intracloud flash are 28.9 and 22.3 km respectively;the average NOX productions of per cloud-to-ground and intracloud flash are 1.89×1025 and 0.42×1025 molecules,respectively.  相似文献   

14.
气溶胶对雷暴云电过程影响的数值模拟研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文在已有的三维雷暴云起、放电模式中加入了一种经典的气溶胶活化参数化方案,结合一次长春雷暴个例,进行了雷暴云起放电数值模拟试验.研究显示气溶胶浓度改变对雷暴云微物理、起电及放电过程都有重要影响.结果表明:(1)污染型雷暴云中气溶胶浓度增加时,云滴数目增多,上升风速加强;云中冰晶与霰粒子数浓度增加但尺度减小;(2)相对于清洁型雷暴云,污染型雷暴云非感应起电过程弱,感应起电过程强,起电持续时间长;(3)污染型雷暴云中首次放电时间延迟,闪电持续发生的时间长,总闪电频次增加,正地闪频次增加明显.  相似文献   

15.
Lightning flashes are usually preceded by preliminary breakdown processes (PBPs) before a stepped leader is initiated. These breakdown processes are not well understood. An early model, the so-called BIL model, has been called into question in later studies. However, we have found that the BIL model is quite successful in describing initial processes at least in high-latitude Scandinavian lightning. We present results from one summer of measurements in Finland, during which the vertical electric field was measured with a standard broadband plate antenna system. Lightning flash locations were provided by a lightning detection network and magnetic fields were measured with an experimental narrowband detection system. The relationship between the preliminary breakdown and the first return stroke (RS) is studied for 193 flashes at distances of 5–70 km. We can identify a preliminary breakdown in at least 90% of the flashes. The peak electric field of the RS is on average four times as intensive as the highest peak of the PBP. However, in 25% of the cases the PBP peak is more intensive. On the other hand, we show that this method of comparing intensities is physically arbitrary, since the PBP is continuous and the RS is impulsive. The narrowband measurement allows a physically consistent definition for intensities as the root-mean-square (RMS) sum of the most intense parts of signals. The PBP and RS are shown to have almost equal intensities at small distances. At larger distances, the PBP weakens more rapidly. This is suggested to be due to different propagation regimes, with the PBP signal changing from space-wave to ground-wave propagation with increasing distance, while the RS is predominantly ground wave at all distances. The result may have practical applications in narrowband detection of lightning. The BIL model suggests a characteristic signal in the narrowband signal, which could be used to identify the start of a lightning flash. The change in the RS–PBP ratio as a function of distance is statistically significant, but is too weak to significantly improve ranging methods.  相似文献   

16.
云闪放电对云内电荷和电位分布影响的数值模拟   总被引:12,自引:3,他引:12       下载免费PDF全文
我们应用改进的随机闪电参数化方案,对两次雷暴的起、放电过程进行了二维125 m和250 m分辨率云闪模拟试验,分析表明高分辨率模拟的云闪通道几何结构、延伸范围和最大垂直电场变化等特征与观测结果更为一致,并且揭示了云闪放电重新配置云内电荷分布和空间电荷中和过程的一种新的物理图像:(1) 云闪的直接物理效应是在已有的空间电荷区内沿着放电通道沉积异极性电荷、形成复杂的空间电荷分布,有效地导致云中电位和场强绝对值及静电场能量剧烈下降,使放电终止.其中:放电后在闪电通道经过主要区域,电位降到±30 MV之间,垂直电场强度也降到±20 kV·m-1之间,一次正或负云闪估计消耗掉107~1010 J静电能;(2) 云中电荷中和不是正、负空间电荷简单地直接相互抵消的瞬态过程,而是广泛分布的云中空间电荷与通道沉积的异极性电荷通过湍流交换、平流输送、重力沉降以及起电等多种因素逐渐混合并部分被中和的一个后续慢过程,其弛豫时间典型值在14~44 s之间,在此期间通道感应电荷总量下降到50%以下.并残余部分电荷参与后续放电前高空间电荷密度和强电场的重建过程.  相似文献   

17.
Combined with the existing stochastic lightning parameterization scheme, a classic tripole charge structure in thunderstorms is assumed in the paper, and then 2-dimensional fine-resolution lighting discharge simulations are performed to quantitatively investigate the effect of lower positive charge (LPC) on different types of lightning. The results show: (1) The LPC plays a key role in generating negative cloud-to-ground (CG) flashes and inverted intra-cloud (IC) lightning, and with the increase of charge density or distribution range of LPC region, lightning type changes from positive polarity IC lightning to negative CG flashes and then to inverted IC lightning. (2) Relative to distribution range of charge regions, the magnitude of charge density of the LPC region plays a dominant role in lightning type. Only when the maximal charge density value of LPC region is within a certain range, can negative CG flashes occur, and the occurrence probability is relatively fixed. (3) In this range, the charge density and distribution range of LPC region jointly determine the occurrence of negative CG flashes, which has a linear boundary with the trigger condition of IC lightning. (4) The common effect of charge density and distribution range of the LPC region is to change the distribution of positive potential well of bottom part of thunderstorms, and inverted IC lightning occurs when the initial reference potential is close to 0 MV, and negative CG flashes occur when the initial reference potential is far less than 0 MV.  相似文献   

18.
Different approaches are used in estimating the global production of NOx by lightning flashes, including field measurements carried out during thunderstorm conditions, theoretical studies combining the physics and chemistry of the electrical discharges, and measurements of NOx yield in laboratory sparks with subsequent extrapolation to lightning. In the latter procedure, laboratory data are extrapolated to lightning using the energy as the scaling quantity. Further, in these studies only the return strokes are considered assuming that contributions from other processes such as leaders, continuing currents, M components, and K processes are negligible. In this paper, we argue that the use of energy as the scaling quantity and omission of all lightning processes other than return strokes are not justified. First, a theory which can be used to evaluate the NOx production by electrical discharges, if the current flowing in the discharge is known, is presented. The results obtained from theory are compared with the available experimental data and a reasonable agreement is found. Numerical experiments suggest that the NOx production efficiency of electrical discharges depends not only on the energy dissipated in the discharge, but also on the shape of current waveform. Thus, the current signature, can influence extrapolation of laboratory data to lightning flashes. Second, an estimation of the NOx yield per lightning flash is made by treating the lightning flash as a composite event consisting of several discharge processes. We show that the NOx production takes place mainly in slow discharge processes such as leaders, M components, and continuing currents, with return strokes contributing only a small fraction of the total NOx. The results also show that cloud flashes are as efficient as ground flashes in NOx generation. In estimating the global NOx production by lightning flashes the most influencing parameter is the length of the lightning discharge channel inside the cloud. For the total length of channels inside the cloud of a typical ground flash of about 45 km, we estimate that the global annual production of NOx is about 4 Tg(N).  相似文献   

19.
卫星观测到的全球闪电活动及其地域差异   总被引:17,自引:2,他引:17       下载免费PDF全文
闪电活动在时间和空间尺度上都有很大的可变性. 本文利用热带降水测量计划(TRMM)卫星上携带的闪电探测系统获取的闪电定位资料首次对一些典型地区的闪电活动进行了对比分析. 研究发现不同地区的闪电活动无论在闪电频数或放电强度方面都有很大的差别,海洋上的闪电活动频数与陆地上的闪电活动频数可相差几十倍;不同地区闪电活动的多少不仅取决于该地雷暴日数的多少,更重要的还取决于该地每次雷暴过程闪电频数的多少;不同地区的闪电放电强度有随闪电频数增加而减小的趋势. 进一步研究还表明,不同地区闪电光辐射能的不同可以用对流最大不稳定能量(ECAPE)来解释,闪电放电强度与ECAPE之间存在非常好的线性正相关;而闪电活动频数对ECAPE的响应则与闪电光辐射能不同,二者之间没有发现明显的相关.  相似文献   

20.
Measurements of the electrical characteristics of the atmosphere above the surface have been made for over 200?years, from a variety of different platforms, including kites, balloons, rockets and aircraft. From these measurements, a great deal of information about the electrical characteristics of the atmosphere has been gained, assisting our understanding of the global atmospheric electric circuit, thunderstorm electrification and lightning generation mechanisms, discovery of transient luminous events above thunderstorms and many other electrical phenomena. This paper surveys the history of atmospheric electrical measurements aloft, from the earliest manned balloon ascents to current day observations with free balloons and aircraft. Measurements of atmospheric electrical parameters in a range of meteorological conditions are described, including clear air conditions, polluted conditions, non-thunderstorm clouds, and thunderstorm clouds, spanning a range of atmospheric conditions, from fair weather to the most electrically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号