首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radio frequency observations of cloud-to-ground lightning (CG) were made in 1999 in Guangdong Province with the broadband lightning interferometer. In this paper, radiation source locations and electric field waveforms are analyzed for different types of breakdown events, including the preliminary breakdown of in-cloud activities, the stepped leaders of initial strokes to ground and activities during and following return strokes. It is shown that the structure and development of lightning discharges and associated breakdown processes can be reconstructed by using this new type of lightning radiation source location system. The detectable radiation of lightning was primarily produced by the negative breakdown process. The channel was concentrated with few branches during the preliminary breakdown stage of CG lightning flashes. The radiation sources appeared generally at the tip of the channel. During the late period of the stepped leader, the radiation sources were dispersed with branches extended away from the main channel. The radiation sources were in a certain length segment of the channel and the altitude of the segment descended along with the propagation of the leader to the ground. During the preliminary breakdown and the stepped leader of initial strokes to the ground, a sequence of fast negative streamers were observed to start continually from or farther away the lightning-initiated region and propagate along the developed leader channel, which may supply negative charge that assisted the leader’s development. The progression speed of fast negative streamers was about ten times faster than the average speed of lightning channel.  相似文献   

2.
Since the summer of 1996, scientists from China and Japan have conducted a joint observation of natural cloud-to-ground lightning discharges in the Zhongchuan area that is located close to Qinghai-Xizang (Tibet) Plateau, China. It has been found that the long-duration of intracloud discharge processes, just before the first return stroke, lasted more than 120 ms for 85% of cloud-to-ground flashes in this area, with a mean duration of 189.7 ms and a maximum of 300 ms. We present the results of charge sources neutralized by four ground flashes and two intracloud discharge processes, just before the first return stroke, by using the data from a 5-site slow antenna network synchronized by GPS with 1 s time resolution. The result shows that the altitudes of the neutralized negative charge for three negative ground flashes were between 2.7 to 5.4 km above the ground, while that of neutralized positive charges for one positive ground flash and one continuing current process were at about 2.0 km above the ground. The comparison with radar echo showed that the negative discharges initiated in the region greater than 20 dBZ or near the edge of the region with intense echoes greater than 40 dBZ, while positive discharge initiated in the weak echo region.  相似文献   

3.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges.A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

4.
Sprites are newly discovered optical emissions in the mesosphere over large thunderstorms. This paper is the observational summary of winter sprites in the Hokuriku area of Japan and their parent lightning in the winter of 2004/2005, by using the coordinated optical and electromagnetic (VHF and ELF) measurements in Japan. As the results of optical observations at two stations, we have found that this campaign has yielded a variety of sprite shapes; V-angle shaped structures have been often observed (25%) in addition to columnar structures familiar for us. All of the sprite events are found to be associated with +CG lightning, as seen from the macroscopic information by ELF data at Moshiri. However, examining the microscopic properties of parent lightning as seen from the VHF SAFIR lightning detection network, has suggested very complicated characteristics of parent lightning discharges inducing sprites, as compared with the ELF data. One half of the sprite events are also found to be associated with +CG by the SAFIR observation, but another half has yielded rather new results as compared with earlier results. Four events are definitely associated with -CG and the remaining three events, inter-cloud flashes. The overall picture for Japanese winter sprites and their parent lightning discharges, is significantly different from that for the summer-time, continental sprites. This is indicative of complexity of winter lightning in the Hokuriku area of Japan and this would provide new information on the sprite generation mechanism.  相似文献   

5.
The lightning-induced-damages in the mid-latitude regions are usually caused during severe thunder-storms. But the discharge parameters of natural lightning are difficult to be measured. Five lightning flashes have been artificially triggered with the rocket-wire technique during the passage of two severe thunderstorms. The discharge current and close electric field of return stroke in artificially triggered lightning have been obtained in microsecond time resolution by using current measuring systems and electric field change sensors. The results show that the five triggered lightning flashes include 1 to 10 return strokes, and the average return stroke current is 11.9 kA with a maximum of 21.0 kA and a mini-mum of 6.6 kA, similar to the subsequent return strokes in natural lightning. The half peak width of the current waveform is 39 μs, which is much larger than the usual result. The peak current of stroke Ip (kA) and the neutralized charge Q(C) has a relationship of Ip = 18.5Q0.65. The radiation field of return stroke is 5.9 kV·m-1 and 0.39 kV·m-1 at 60 m and 550 m, respectively. The radiation field decreases as r -1.119 with increase of horizontal distance r from the discharge channel. Based on the well-accepted transmission line model, the speed of return stroke is estimated to be about 1.4×108 m·s-1, with a variation range of (1.1―1.6)×108 m·s-1. Because of the similarities of the triggered lightning and natural lightning, the results in this article can be used in the protection design of natural lightning.  相似文献   

6.
Different approaches are used in estimating the global production of NOx by lightning flashes, including field measurements carried out during thunderstorm conditions, theoretical studies combining the physics and chemistry of the electrical discharges, and measurements of NOx yield in laboratory sparks with subsequent extrapolation to lightning. In the latter procedure, laboratory data are extrapolated to lightning using the energy as the scaling quantity. Further, in these studies only the return strokes are considered assuming that contributions from other processes such as leaders, continuing currents, M components, and K processes are negligible. In this paper, we argue that the use of energy as the scaling quantity and omission of all lightning processes other than return strokes are not justified. First, a theory which can be used to evaluate the NOx production by electrical discharges, if the current flowing in the discharge is known, is presented. The results obtained from theory are compared with the available experimental data and a reasonable agreement is found. Numerical experiments suggest that the NOx production efficiency of electrical discharges depends not only on the energy dissipated in the discharge, but also on the shape of current waveform. Thus, the current signature, can influence extrapolation of laboratory data to lightning flashes. Second, an estimation of the NOx yield per lightning flash is made by treating the lightning flash as a composite event consisting of several discharge processes. We show that the NOx production takes place mainly in slow discharge processes such as leaders, M components, and continuing currents, with return strokes contributing only a small fraction of the total NOx. The results also show that cloud flashes are as efficient as ground flashes in NOx generation. In estimating the global NOx production by lightning flashes the most influencing parameter is the length of the lightning discharge channel inside the cloud. For the total length of channels inside the cloud of a typical ground flash of about 45 km, we estimate that the global annual production of NOx is about 4 Tg(N).  相似文献   

7.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges. A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

8.
The negative CG lightning discharges neutralizing negative charges in cloud usually dominate for most of thunderstorms. However, a lot of positive CG light-ning discharges often occur in the disappearing stage of thunderstorms, in the stratiform region of mesoscale convective systems and some supercells producing hail and tornado. Because the positive CG lightning discharges produce larger current of the return stroke and neutralize more charges due to the continuing currents with longer las…  相似文献   

9.
Lightning flashes are usually preceded by preliminary breakdown processes (PBPs) before a stepped leader is initiated. These breakdown processes are not well understood. An early model, the so-called BIL model, has been called into question in later studies. However, we have found that the BIL model is quite successful in describing initial processes at least in high-latitude Scandinavian lightning. We present results from one summer of measurements in Finland, during which the vertical electric field was measured with a standard broadband plate antenna system. Lightning flash locations were provided by a lightning detection network and magnetic fields were measured with an experimental narrowband detection system. The relationship between the preliminary breakdown and the first return stroke (RS) is studied for 193 flashes at distances of 5–70 km. We can identify a preliminary breakdown in at least 90% of the flashes. The peak electric field of the RS is on average four times as intensive as the highest peak of the PBP. However, in 25% of the cases the PBP peak is more intensive. On the other hand, we show that this method of comparing intensities is physically arbitrary, since the PBP is continuous and the RS is impulsive. The narrowband measurement allows a physically consistent definition for intensities as the root-mean-square (RMS) sum of the most intense parts of signals. The PBP and RS are shown to have almost equal intensities at small distances. At larger distances, the PBP weakens more rapidly. This is suggested to be due to different propagation regimes, with the PBP signal changing from space-wave to ground-wave propagation with increasing distance, while the RS is predominantly ground wave at all distances. The result may have practical applications in narrowband detection of lightning. The BIL model suggests a characteristic signal in the narrowband signal, which could be used to identify the start of a lightning flash. The change in the RS–PBP ratio as a function of distance is statistically significant, but is too weak to significantly improve ranging methods.  相似文献   

10.
During the northern hemisphere winter of 2005–2006, transient luminous events (TLEs) known as ‘sprites’ and ‘elves’ were imaged over thunderstorm cells in the eastern Mediterranean. Simultaneously, extremely low frequency (ELF) data (ELF: 3–3000 Hz) were recorded at two observation stations in Israel and Hungary in order to qualify and quantify parameters of the parent lightning discharge associated with the transient optical emissions in the upper atmosphere. In this study, we found that for 87% (Israel) and 77% (Hungary) of optically observed TLEs an intense ELF transient event was recorded. These stations are located some 500 and 2100 km, respectively, from the region of the TLEs. All ELF transients that were associated with TLEs were caused by lightning discharges with positive polarity. Calculation of the charge moment change showed values between 600 and 2800 C km with a peak around 1000 C km. Additionally, the time delay between the +CG and ensuing sprite was 76±34 ms and it was displaced up to 50 km from its parent CG.One of our objectives in the present study was to characterize, based on the ELF radiation from lightning, the electromagnetic (EM) waveforms of the lightning discharges which generate TLEs in the time and frequency domains, and to compare them with other lightning discharges occurring in the same thunderstorm cell at approximately the same time, but which did not produce TLEs. The survey for a typical EM waveform showed no unique ELF signature for lightning discharges associated with either sprites or elves.  相似文献   

11.
During the summer of 2005, transient luminous events were optically imaged from the French Pyrénées as part of the EuroSprite campaign. Simultaneously, extremely low frequency (ELF: 3–3000 Hz) and broadband very low frequency (VLF: 3–30 kHz) data were recorded continuously at two separate receivers in Israel, located about 3300 km from the area of the parent lightning discharges responsible for the generation of sprites. Additionally, narrowband VLF data were collected in Crete, at about 2300 km away from the region of sprites.The motivation for the present study was to identify the signature of the sprite-producing lightning discharges in the ELF and VLF electromagnetic frequency bands, to qualify and compare their parameters, and to study the influence of the thunderstorm-activated region on its overlaying ionosphere. For the 15 sprites analyzed, their causative positive cloud-to-ground (+CG) discharges had peak current intensities between +8 and +130 kA whereas their charge moment changes (CMC) ranged from 500 to 3500 C km. Furthermore, the peak current reported by the Météorage lightning network are well correlated with the amplitudes of the VLF bursts, while showing poor correlation with the CMCs which were estimated using ELF methods.Additionally, more than one +CG was associated with six of the sprites, implying that lightning discharges that produce sprites can sometimes have multiple ground connections separated in time and space. Finally, for a significant number of events (33%) an ELF transient was not associated with sprite occurrence, suggesting that long continuing current of tens of ms may not always be a necessary condition for sprite production, a finding which influences the estimation of the global sprite rate based on Schumann resonance (SR) measurements.  相似文献   

12.
A narrowband radio interferometer has been developed and used to locate the entire sources of VHF radiations from a negative cloud-to-ground (CG) lightning discharge which contains 19 strokes. This system uses five antennas to form an array consisting of short- and long-baselines along two or- thogonal directions. The system error which comes from frequency conversion is reduced by phase detection through direct high frequency amplifying. An interactive graphic analysis procedure is used to remove the fringe ambiguities which exist inherently in interferometry and to determine the direction of lightning radiation sources in two dimensions (azimuth and elevation) as a function of time at a time resolution of microsecond orders. With the developed system, the whole progression process in time and space of a lightning flash can be reconstructed. In this paper, combining the synchronous data of electric filed change and VHF radiation, the whole processes of an example negative CG flash have been studied in detail. It is found that the preliminary breakdown event of the CG flash started from negative charge region and exhibited firstly a downward pregression and then an upward propagation. There were very intense and continuous radiations during stepped leaders which became much stronger when the first return stroke began. In contrast, there were less and only discrete radiations during dart leaders. Stepped leader and dart leader may transform to each other depending on the state of the ionization of the path. The progression speed of initial stepped leaders was about 105 ms?1, while that was about 4.1×106 and 6.0×106 ms?1 for dart leaders and dart-stepped leaders, respectively. M events produced hook-shaped field changes accompanied by active burst of radiations at their begin- nings. Followed these active radiation processes, M events appeared to contact finally into conducting main discharge channels. The mean progression speed of M events was about 7×107 ms?1, greater than that of the dart leaders and dart-step leaders. K events and attempted leaders were essentially the same as dart leaders except that they could not reach the ground and initiate return strokes.  相似文献   

13.
In recent years, locating total lightning at the VLF/LF band has become one of the most important directions in lightning detection. The Low-frequency E-field Detection Array(LFEDA) consisting of nine fast antennas was developed by the Chinese Academy of Meteorological Sciences in Guangzhou between 2014 and 2015. This paper documents the composition of the LFEDA and a lightning-locating algorithm that applies to the low-frequency electric field radiated by lightning pulse discharge events(LPDEs). Theoretical simulation and objective assessment of the accuracy and detection efficiency of LFEDA have been done using Monte Carlo simulation and artificial triggered lightning experiment, respectively. The former results show that having a station in the network with a comparatively long baseline improves both the horizontal location accuracy in the direction perpendicular to the baseline and the vertical location accuracy along the baseline. The latter results show that detection efficiencies for triggered lightning flashes and return strokes are 100% and 95%, respectively. The average planar location error for return strokes of triggered lightning flashes is 102 m. By locating LPDEs in thunderstorms, we find that LPDEs are consistent with convective regions as indicated by strong reflectivity columns, and present a reasonable distribution in the vertical direction.In addition, the LFEDA can reveal an image of lightning development through mapping the channels of lightning. Based on three-dimensional locations, the vertical propagation speed of the preliminary breakdown and the changing trend of the leader's speed in an intra-cloud and a cloud-to-ground flash are investigated. The research results show that the LFEDA has the capability for three-dimensional location of lightning, which provides a new technique for researching lightning development characteristics and thunderstorm electricity.  相似文献   

14.
Summary Although lightning flashes have been photographed which apparently have up to 40 or more component strokes, no flashes having more than 14 strokes have been observed on records of the eletrical fields of thunderstorms. The apparent discrepancy between the two methods of observation is explained by the fact that small momentary increases in the continuing current flowing to ground after some strokes, are easily mistaken for component strokes on photographs taken with slow cameras.After the cessation of a discharge, the ionization of the lightning channel decreases at such a rate that a subsequent discharge to earth will require a fresh leader if it follows within an interval longer than about 15 millisec; discharges following at shorter intervals are not preceded by leaders. The channel loses its ionization completely in about 100 millisec.In general, the larger the number of component strokes, the longer is the duration of the flash, but there is no definite relationship between the number of strokes and the duration.Flashes of exceptionally long duration always have one or more very long intervals between two successive strokes and during these intervals there appears to be very little electrical activity in the cloud; it is suggested that the main progress of the discharge in the cloud takes place during the shorter intervals, so that flashes of long duration do not necessarily drain very extensive regions of charge.I wish to thank the South African Council for Scientific and Industrial Research for a grant in aid of this research.  相似文献   

15.
青藏高原那曲地区雷电特征初步分析   总被引:32,自引:3,他引:29       下载免费PDF全文
通过对2002年夏季青藏高原那曲地区雷暴过程及闪电观测资料的初步分析,发现该地区雷暴电荷结构具有多样性和复杂性,地闪明显偏少. 对高原地闪的一些基本特征参量的统计分析表明,无论正地闪还是负地闪梯级先导前都具有持续时间较长的云内放电过程,地闪以单次回击为主. 与中低纬度地区相比,高原地闪中正地闪比例明显要高,为33髎;负地闪为67髎;正、负地闪回击后常常伴随短时间的连续电流.  相似文献   

16.
Based on the VHF lightning locating system,a three-dimensional-space cell-gridded approach is used to extract the lighting channel and calculate the length of the channel.Through clustering of the located radiation sources and then extracting the lightning channel,it can accurately obtain the length of the channel.To validate the feasibility of the approach,a simulation experiment is designed,and it shows the length error is no more than 10%.The relationship between the NO production of per unit arc length and atmospheric pressure obtained in laboratory is applied to the NOX production of per unit flash length at different altitudes in this paper.The channel length and the NOX production of 11 negative cloud-to-ground flashes and 59 intracloud flashes in an isolated thunderstorm in the northeastern Qinghai-Tibet Plateau are calculated.The results show that the average channel lengths of per cloud-to-ground and intracloud flash are 28.9 and 22.3 km respectively;the average NOX productions of per cloud-to-ground and intracloud flash are 1.89×1025 and 0.42×1025 molecules,respectively.  相似文献   

17.
Lightning activity and precipitation structure of hailstorms   总被引:1,自引:0,他引:1  
By using the cloud-to-ground (CG) lightning location data from the lightning detection network of He- nan Province, surface Doppler radar data and standard orbit data of PR, TMI and LIS on TRMM satellite, the spatial and temporal characteristics of CG lightning flashes in 10 severe hailstorms are analyzed. The results show that the percentage of CG lightning in these hailstorms is high with an average value of 45.5%. There is a distinct increase in CG flash rate during the rapid development stage of hailstorms. The hailstone falling corresponds to an active positive flash period, and the increase of CG flash rate is generally accompanied with a decrease of –CG flash rate. The flash rate declines rapidly during the dissipating stage of hailstorms. The precipitation structure and lightning activity in two typical hail- storms are studied in detail. It is found that strong convective cells with reflectivity greater than 30dBZ mainly are situated in the front region of hailstorms, whereas the trailing stratiform region is in the rear part of the hailstorms. The maximum heights of echo top are higher than 14 km. Convective rain con- tributes much more rainfall to the total than stratiform rain, and the convective rain takes about 85% and 97% of the total in the two cases, respectively. Total lightning in the hailstorms is very active with the flash rate up to 183 fl/min and 55 fl/min, respectively. The results also indicate that most lightning flashes occurred in the echo region greater than 30 dBZ and its immediate periphery. The probability of lightning occurrence is 20 times higher in the convective region than in the stratiform region. The result suggests that the lightning information is helpful to the identification of convective rain region. The linear relationship between flash rate and ice water content is disclosed primarily.  相似文献   

18.
We describe the space–time distribution of the pulsed electric field in the middle atmosphere above a positive Γ-shaped lightning stroke. The channel of such a discharge contains a vertical and a horizontal section. The current wave moves initially vertically and then turns horizontally so that radiation appears from the vertical electric dipole followed by that from the horizontal dipole. Combined with reflection from the perfectly conducting ground, the source provides three subsequent pulses in the atmosphere, with the lag being determined by the finite velocity of the current wave in the Γ-shaped stroke. The pulses are reproduced by reflections from the air-ground and the air-ionosphere interfaces and the waveform resembles the M-component, which is often noted in the negative strokes (e.g. Yashunin et al., J Geophys Res 112:D10109, 2007). The non-stationary fine structure appears in the spatial distribution of electric field, which persists for 2 ms or even more and exceeds the runaway electron threshold. Estimates support the idea of free electron bunching in the mesosphere by the pulsed electric field. Focusing may occur about 10 km away from the point of electron- field interaction; it is delayed by a few ms from the moment of interaction. The data presented might be helpful in realistic modeling of the red sprite formation.  相似文献   

19.
We have considered spatial distributions of positive lightning discharges in the east of Siberia for the summer seasons of 2003–2007 and properties of their electromagnetic signals with the ELF “slow tail”, which, as is known, can be accompanied by sprites. There are two main regions of positive discharges located in the south and west of Yakutsk. Two other “centers” (the northeastern and the eastern) are located in high-mountainous regions. In these regions the positive discharges intensity can exceed the negative discharge intensity.The electromagnetic signals in the ELF range (usually in the form of two half-cycles) were observed after the VLF atmospherics were recorded in the high-latitude regions. The delay of ELF pulses relative to the corresponding atmospherics was 0–7 ms. The long (up to 350 ms) events of quasi-periodic ELF oscillations with the period of about 7 ms (which corresponds to the quasi-period of ELF pulses) were revealed.  相似文献   

20.
The first red sprite events scientifically observed from Poland on 20/21 July 2007, during the two-week SPARTAN Sprite-Watch 2007 campaign, are analysed in the context of the meteorological conditions over Poland and the Czech Republic at that time. The phenomena were detected and recorded from the IMWM High-Mountain Meteorological Observatory at Mount Śnieżka using a low-light television CCD camera. Meteorological conditions over the south-west Poland were monitored on the basis of information from the Polish and Czech meteorological radar and lightning detection systems and also from satellite infra-red difference images, indicating the development of thunderstorm clouds over central Europe. Four sprite events detected in the night-time of 20/21 July indicate that in this region sprites are produced by massive storm cells built on warm fronts which are supplied by warm and humid tropical air masses during local summer thunderstorm season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号