首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
根据巧家、石棉的小地震的观测资料,指出P波初动半周期在震级比较小时几乎是恒定的,在震级比较大时随震级的增大而增大;并指出P波初动振幅的对数也随震级的增大而增大。以圆盘形均匀位错面作为中、小地震震源的理论模式,计算了它所辐射的地震波远场位移,从而导出了体波初动半周期及振幅与震源尺度及波速等物理量的定量关系,解释了P波初动半周期及振幅与震级之间的经验关系。考虑到波在介质中的衰减和频散、地表面的影响以及地震仪器的频率特性,通过褶积方法合成了上述位错源产生的理论地震图,提出了直接由实际地震图上的初动半周期及振幅测定震源尺度、地震矩、应力降和错距等震源参数以及介质的晶质因数Q的方法.运用上述方法,测定了巧家、石棉两地区介质的品质因数Q和小震的震源参数.这两个地区介质的品质因数Q分别为620和560.石棉地区小地震的应力降大约在2-30巴之间,巧家地区小地震的应力降比较接近,平均约1.4巴.将这个结果和1962年3月19日新丰江地震与1975年2月4日海城地震的前、主震的应力降作对比,我们看到,巧家地区小震的应力降的特征与上述两次大地震的前震的应力降的特征是类似的,因此不能排斥巧家地区的小震是一个较大地震的前震的可能性.以测得的小震应力降的平均值(约1.4巴)作为这个可能发生的较大地震应力降的下限估计值,从主震震级和主震应力降的经验关系可以推知,其震级的下限是5.2级.  相似文献   

2.
目前,国内在数字化地震资料研究中,主要应用S波来研究震源参数.本文充分利用上海数字化地震台阵(网)资料,挑选了2001~2004年华东地区发生的9个震级较大的中等地震,反演了单台记录垂直向纵波(P波)及横波(S波)震源谱,根据布龙模型,计算每个地震单台拐角频率、地震矩、零频谱值、震源破裂半径、应力降等参数,求出每个地震的震源参数(P波和S波)的平均值及其均方差,对这9个地震的P波、S波震源参数计算结果进行了对比.结果表明,用P波段数据进行震源参数的研究是可行的.  相似文献   

3.
大同地震前后介质Q值和小震震源参数的变化   总被引:1,自引:0,他引:1  
韦士忠  李玉萍 《地震》1992,(2):30-38
本文使用北京台网微机数字记录,通过波谱分析研究了大同地震前后介质Q值和小震应力降的变化。研究结果表明:(1)大同地震发生在低Q值区,震前Q值升高,震后恢复正常。(2)大同地震前,小震应力降明显升高,震后恢复正常,震前震后应力降的变化与介质Q值变化和应力变化有关。(3)大同地震前后小震震源参数确实有明显不同,无论是应力降、平均位错还是震源尺度都有明显不同。(4)大同地震前后小震波谱有明显变化。  相似文献   

4.
新丰江ML4.9级地震序列的波谱分析   总被引:4,自引:1,他引:3  
对广东数字遥测地震台网记录到的新丰江ML4.9级地震及前后小地震的波形资料作了频谱分析,结果表明,主震前,新丰江地区小震的纵、横波位移谱的拐角频率比值fc(P)/fc(S)为1.51左右;主震后下降到1.3左右;新丰江地区小震的纵、横波位移谱的拐角频率比的统计平均值为1.41。同时还测定了前、余震系列的应力降、地震矩、震源尺度及平均位错等震源参数。  相似文献   

5.
本文处理了张掖地区数字微震监测台网资料,求得了小震的震源参数,对中小地震相对比较集中的肃南地区部分地震进行了谱分析,估计了震源的谱参数。用振幅比方法反演了肃南地区小震的震源机制解及错动参数,分析了它们的构造意义和预报意义。  相似文献   

6.
京津地区Q值及平均应力降的分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
本文用P波初动半振幅和半周期直接测定介质的品质因素(Q值)和小震震源参数的方法,测定了京津地区十个区两个时间段介质的平均品质因数及小震震源参数。结果表明:唐山大震前在平谷台到唐山震区的路径上平均Q值明显的高,大约是其它区的一至二倍,并且唐山震区平均应力降最大,比其它区约大一个数量级,这说明唐山大震前这个地区介质的强度较高,整体性较强,并比其它地区积累了较高的应力。在这个基础上,对京津地区的地震趋势提出了看法。 此外,本文还给出了京津地区中小地震震源参数间的经验关系。  相似文献   

7.
通过北京周围地区中强地震前后介质Q值,剪切应力和小震震源参数的变化的研究,给出一种中强地震短临预报的新方法。  相似文献   

8.
研究了宁夏南部地区(35°20'~37°40'N,104°30'~106°30'E)小震综合机制解的变化特征.发现在中强地震前,该地区小震综合机制解的P轴方位偏离平均值,向E或SE偏转,其仰角有增大的趋势,同时小震纵波(Pn和Pg)初动符号一致.6次中强地震的震源机制解表明,该地区P轴方位与主压应力方向基本一致,因此该地区发生破坏性地震的可能性不大.近几年来的地震活动图像显示,该地区的地震活动有向中卫、中宁和同心地区集中的迹象.  相似文献   

9.
用美国南加州地区的震源机制资料,研究了以1992年Landers M.7.3和1999年Hector Mine M,7.1地震矩心为圆心,分别以300、250、200、150、100和50km为半径的圆形区域内10年内地震震源机制相对主震震源机制平均空间旋转角的变化.结果表明,两个地震前均有小震震源机制趋于主震机制的现象.震前小震震源机制与主震震源机制的平均空间旋转角约在大震前半年开始减小,搜索平均空间旋转角降低的最优半径分别为250km和100km.震前所出现的平均空间旋转角最小值均低于其2倍标准差.该标准似乎可以作为大地震危险性增加的判据.  相似文献   

10.
瀑布沟水库蓄水前中小地震震源参数研究   总被引:1,自引:0,他引:1  
研究瀑布沟水库蓄水前库区地震的活动性以及震源机制、应力场等震源参数的性质,为水库蓄水之后可能诱发地震活动的监测、成因及类型鉴别给出可供依据的参考.研究结果显示,水库库尾边缘西部地震活动水平相对较高;库中段的中小地震活动水平相对较弱;大坝附近的库首段地震活动水平相对较低,震源深度主要集中在5-15 km.研究区内小震震源机制解结果显示,瀑布沟水库蓄水前小震主要为走滑型地震,蓄水区与研究区平均应力场总体呈NW方向.  相似文献   

11.
Many small earthquakes occurred intensively and continuously and formed an earthquake sequence after the ML3.8 earthquake happened at Rushan County, Shandong Province on October 1, 2013. Up to March, 2017, more than 13 000 events have been recorded, with 3 429 locatable shocks, of which 31 events with ML ≥ 3.0. This sequence is rarely seen in East China for its extraordinary long duration and the extremely high frequency of aftershocks. To track the developing tendency of the earthquake sequence accurately, 20 temporary seismometers were arranged to monitor the sequence activities around the epicenter of the sequence since May 6, 2014. Firstly, this paper adopts double difference method to relocate the 1 418 earthquakes of ML ≥ 1.0 recorded by temporary seismometers in the Rushan earthquake sequence (May 7, 2014 to December 31, 2016), the result shows that the Rushan earthquake sequence mainly extends along NWW-SEE and forms a rectangular activity belt of about 4km long and 3km wide. In addition, the seismogenic fault of Rushan earthquake sequence stretches along NWW-SEE with nearly vertical strike-slip movement and a small amount of thrust component. Then we apply the P-wave initial motion and CAP to invert the focal mechanism of earthquakes with ML ≥ 1.5 in the study area. The earthquakes can be divided into several categories, including 3 normal fault earthquakes (0.9%), 3 normal-slip earthquakes (0.9%), 229 strike-slip earthquakes (65.8%), 18 thrust fault earthquakes (5.2%), 37 thrust-slip earthquakes (10.6%)and 58 undefined (16.6%). Most earthquakes had a strike-slip mechanism in Rushan (65.8%), which is one of the intrinsic characteristics of the stress field. According to the focal mechanism solutions, we further utilized the LSIB method (Linear stress inversion bootstrap)to invert the stress tensor of Rushan area. The result shows that the azimuth and plunge of three principal stress (σ1, σ2, σ3) axes are 25°, 10°; 286°, 45°; 125°, 43°, respectively. Based on the stress field inversion results, we calculated the focal mechanism solutions consistency parameter (θ)and the angle (θ1)between σ1 and P axis. The trend lines of θ and θ1 were relatively stable with small fluctuation near the average line over time. Furthermore, the earthquake sequence can be divided into three stages based on θ and θ1 values. The first stage is before September 16, 2014, and the variation of the θ and θ1 values is relatively smooth with short period. All focal mechanism solutions of the three ML ≥ 3.0 earthquakes exhibited consistence. The second stage started from September 16, 2014 to July 1, 2015, the fluctuation range of θ and θ1 values is larger than that of the first stage with a relative longer period. The last stage is after July 1, 2015, values of θ and θ1 gradually changed to a periodic change, three out of the four ML ≥ 3.0 earthquakes (strike-slip type)displayed a good consistency. Spatially, earthquakes occurred mainly in green, yellow-red regions, and the focal mechanism parameters consistency θ was dominant near the green region (around the average value), which presents a steady state, and the spatial locations are concordant with the distribution of θ value. Moreover, all of ML ≥ 3.0 earthquakes are located in the transitional region from the mean value to lower value area or region below the mean value area, which also indicates the centralized stress field of the region.  相似文献   

12.
本文利用甘肃河西地震台网观测到的肃南南部地区1987年1月至1992年10月间的地震记录资料,分析研究了青藏高原北缘地震波特征量动态变化与该区及邻近地区强震活动的关系。所研究的地震波特征量有P、S波速度Vp/Vs及其比值Vp/Vs;振幅比Ap/As;P波初始部分波形时间线性度r和空间线性度α1、α2以及平均半周期Th。所得结果表明,包括河西走廊中部及祁连山中段在内的青藏高原北缘地区的地震波特征量的动态变化可反映出震中距约在300公里。内的7级强震及震中距约在200公里以内的5~6级中强震前,由构造应力场变化引起的大面积介质性质的变化,因而可把它们视为强震和中强震的近源区或远场区地震波前兆异常。  相似文献   

13.
利用双差定位法对瀑布沟水库及邻区1 834次小震进行了重新定位,并对距水库水域最近的2个小震集中区的地震性质进行了分析。重新定位后得到1 708次小震结果,定位残差由原来的0.93s降为0.21s,水平向估算误差平均为0.6km,垂直向估算误差平均为2.9km; 平面空间分布显示,重新定位地震主要分布在研究区的西南(A区)、库中区(C区)和水库大坝附近(D区); A区小震密集与其处于鲜水河断裂中南段、安宁河北段和大凉山断裂北段交会区的特殊地理位置有关。C,D区高度集中分布的小震与水库蓄水无关,属于各种建设施工造成的爆破地震。  相似文献   

14.
地震应力降与岩石破裂应力降   总被引:4,自引:0,他引:4       下载免费PDF全文
臧绍先 《地震学报》1984,6(2):182-194
从应力降的静态理论,讨论了地震应力降的精度,并利用野外观测的最大位移和由地震波得到的地震矩,分别计算了十个研究较充分的地震应力降.对不同作者的结果作了比较,可以看出,应力降有因子为2的变化范围.但从统计观点看,地震应力降是分布在几巴到几百巴的数量级,大多数位于20-60巴;总结了地壳中代表性岩石在地壳温度、压力条件下,粘滑及脆性剪切破裂时的应力降,它们与温度、压力、岩性、含水矿物的存在有关.取值范围是从零到几千巴数量级;讨论了地震断层的物理状态,指出地震应力降是一种平均结果,并由于静态理论忽略了断层面破裂所消耗的能量,所以地震应力降比实际的应力降要低.   相似文献   

15.
新疆乌鲁木齐地区震源深度分布与断层关系研究   总被引:2,自引:0,他引:2  
采用新疆维吾尔自治区地震局精度较高的常规地震目录和双差定位目录,对乌鲁木齐地区震源深度的分布特征及与断层的关系进行了研究。结果表明,乌鲁木齐地区的平均震源深度随震级的增加而加深,并形成3个分布层。震源绝大多数分布在上地壳1~35km深度范围内,优势集中在上地壳16~25km深度范围内。平均震源深度的空间分布特征与断层的展布密切相关,乌鲁木齐市附近的3组断裂所夹持的地块震源深度最浅,深度处于17~21km之间,而在周边一些深大断裂上震源深度较深。不同构造部位的震源深度剖面显示,清水河子断裂、齐古断裂、依连哈比尔尕等断裂的断裂面处于无震蠕滑或闭锁状态,地震主要发生在其下的滑脱层中;而在霍尔果斯、西山、二道沟等断裂上,震源深度从滑脱层延伸到断裂面上,反映出断裂未完全闭锁时的弱运动状态,显示这些断裂为新的活动断裂。震源深度的分布还与乌鲁木齐地区复杂的地壳结构有关,地震多分布在低速体之上或低速体和高速体之间的夹层中  相似文献   

16.
唐山地震的破裂过程及其力学分析   总被引:22,自引:3,他引:22       下载免费PDF全文
由 P 波初动符号资料在 DJS-6机上计算了主震及17个较大余震的断层面解,并按照有限移动源模式测定了主震及三个最大余震的震源参数.主震是发生在一个近似直立的右旋走滑断层上,走向 N30°E,破裂方式为不对称的双侧破裂,以2.7公里/秒的平均速度向北东传播70公里,向南西传播45公里.测定的主震震源参数例如平均位错136厘米,地震矩1.24×1027达因·厘米,应力降12巴等.大多数ML>5.0的余震是发生在主破裂面附近及主破裂面两端的扩展分支上,该扩展分支位于膨胀符号区并与主破裂偏离80°左右.较大余震的多数亦集中在这两个扩展分支上.本文试图从理论上分析这种断裂扩展的力学特征.对于脆性材料的复合变形情形,破裂不再沿原来平面扩展,而是与原来平面偏离一个角度的另一面内扩展.并提出一个力学模型,计算了断层扩展角,计算结果与观测事实比较吻合.根据以上结果,本文讨论了唐山地震特点及发生的力学条件,认为唐山地震不同于发生在大断层上能用粘滑机制解释的那类地震,它和海城地震类似的是,除水平应力场作用外,还可能有地下物质的变迁,由于这种变迁使局部地壳受到垂直力.它和海城地震不同的是,它发生在一个比较均匀的脆性介质内,因而能够积累能量发生大震而没有前震.   相似文献   

17.
On August 8, 2017, a strong earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, northern Sichuan. The earthquake occurred on a branch fault at the southern end of the eastern section of the East Kunlun fault zone. In the northwest of the aftershock area is the Maqu-Maqin seismic gap, which is in a locking state under high stress. Destructive earthquakes are frequent along the southeast direction of the aftershocks area. In Songpan-Pingwu area, only 50~80km away from the Jiuzhaigou earthquake, two M7.2 earthquakes and one M6.7 earthquake occurred from August 16 to 23, 1976. Therefore, the Jiuzhaigou earthquake was an earthquake that occurred at the transition part between the historical earthquake fracture gap and the neotectonic active area. Compared with other M7.0 earthquakes, there are few moderate-strong aftershocks following this Jiuzhaigou earthquake, and the maximum magnitude of aftershocks is much smaller than the main shock. There is no surface rupture zone discovered corresponding to the M7.0 earthquake. In order to understand the feature of source structure and the tectonic environment of the source region, we calculate the parameters of the initial earthquake catalogue by Loc3D based on the digital waveform data recorded by Sichuan seismic network and seismic phase data collected by the China Earthquake Networks Center. Smaller events in the sequence are relocated using double-difference algorithm; source mechanism solutions and centroid depths of 29 earthquakes with ML≥3.4 are obtained by CAP method. Moreover, the source spectrum of 186 earthquakes with 2.0≤ML≤5.5 is restored and the spatial distribution of source stress drop along faults is obtained. According to the relocations and focal mechanism results, the Jiuzhaigou M7.0 earthquake is a high-angle left-lateral strike-slip event. The earthquake sequence mainly extends along the NW-SE direction, with the dominant focal depth of 4~18km. There are few shallow earthquakes and few earthquakes with depth greater than 20km. The relocation results show that the distribution of aftershocks is bounded by the M7.0 main shock, which shows obvious segmental characteristics in space, and the aftershock area is divided into NW segment and SE segment. The NW segment is about 16km long and 12km wide, with scattered and less earthquakes, the dominant focal depth is 4~12km, the source stress drop is large, and the type of focal mechanism is complicated. The SE segment is about 20km long and 8km wide, with concentrated earthquakes, the dominant depth is 4~12km, most moderate-strong earthquakes occurred in the depth between 11~14km. Aftershock activity extends eastward from the start point of the M7.0 main earthquake. The middle-late-stage aftershocks are released intensively on this segment, most of them are strike-slip earthquakes. The stress drop of the aftershock sequence gradually decreases with time. Principal stress axis distribution also shows segmentation characteristics. On the NW segment, the dominant azimuth of P axis is about 91.39°, the average elevation angle is about 20.80°, the dominant azimuth of T axis is NE-SW, and the average elevation angle is about 58.44°. On the SE segment, the dominant azimuth of P axis is about 103.66°, the average elevation angle is about 19.03°, the dominant azimuth of T axis is NNE-SSW, and the average elevation angle is about 15.44°. According to the fault profile inferred from the focal mechanism solution, the main controlling structure in the source area is in NW-SE direction, which may be a concealed fault or the north extension of Huya Fault. The northwest end of the fault is limited to the horsetail structure at the east end of the East Kunlun Fault, and the SE extension requires clear seismic geological evidence. The dip angle of the NW segment of the seismogenic fault is about 65°, which may be a reverse fault striking NNW and dipping NE. According to the basic characteristics of inverse fault ruptures, the rupture often extends short along the strike, the rupture length is often disproportionate to the magnitude of the earthquake, and it is not easy to form a rupture zone on the surface. The dip angle of the SE segment of the seismogenic fault is about 82°, which may be a strike-slip fault that strikes NW and dips SW. The fault plane solution shows significant change on the north and south sides of the main earthquake, and turns gradually from compressional thrust to strike-slip movement, with a certain degree of rotation.  相似文献   

18.
首先采用P波、 SV波和SH波的极性和振幅比联合求解2014年安徽省金寨ML3.9震群序列的震源机制解, 并在此基础上计算得到该震群序列的震源一致性参数和P轴方位角随时间的变化; 然后基于震区附近3个台站记录到的该震群序列的地震波形, 计算其体波谱振幅相关系数, 同时读取震区附近3个台站记录到的该震群序列中115次ML≥1.5地震的极性. 研究结果表明: 金寨ML3.9震群序列的地震震源机制解绝大多数为压性走滑型, P轴方位角较为一致; 其震源一致性参数处于较低水平, 体波谱振幅相关系数较高; 台站所记录到的地震极性也较为一致. 该结果表明金寨ML3.9震群序列的震源一致性程度非常高.   相似文献   

19.
HUANG Hao  FU Hong 《地震地质》2019,41(6):1413-1428
Using the seismic waveform data of Xiaowan seismic network and Yunnan seismic network, we determined the focal mechanisms of 36 earthquakes(ML ≥ 3.0)from Jun. 2005 to Dec. 2008 and 51 earthquakes(ML ≥ 2.5)from Jan. 2009 to Dec. 2015 by generalized polarity and amplitude technique. We inverted tectonic stress field of the Xiaowan reservoir before impounding, using the focal mechanisms of 36 earthquakes(ML ≥ 3.0)from Jun. 2005 to Dec. 2008 and CAP solutions of 58 earthquakes(ML ≥ 4.0)collected and the solutions in the Global Centroid Moment Tensor(GCMT)catalog; We inverted local stress field of the reservoir-triggered earthquake clustering area, using 51 earthquakes(ML ≥ 2.5)from Jan. 2009 to Dec. 2015. Focal mechanisms statistics show that, the Weixi-Qiaohou Fault is the seismic fault. Focal mechanisms were strike-slip type in initial stage, but normal fault type in later stage. Focal depths statistics of 51 earthquakes(ML ≥ 2.5)show that, the average value of focal depths in period Ⅰ, period Ⅱ and period Ⅲ are 8.2km, 7.3km and 7.8km respectively and the standard deviations are 4.3km, 3.5km and 6.0km respectively. The average value of focal depths is basically stable in different period, only the standard deviation is slightly different. Therefore, there is not positive connection between focal depth and deviation of focal mechanisms. What's more, there are 2 earthquakes(number 46 and number 47 in Fig.5 and Table 3)with almost the same magnitude, epicenter and focal depth, but they have different faulting types as normal and strike-slip. The focal mechanism of event No.46 is strike:302°, dip:40° and rake:-97° for plane Ⅰ, however, the focal mechanism of event No.47 is strike:292°, dip:82° and rake:140° for plane Ⅰ. Likewise, earthquake of number 3 and number 18 have similar characteristic. Therefore, the obvious focal mechanism difference of similar earthquake pair indicates the complexity of Weixi-Qiaohou Fault. Considering the quiet-active character of reservoir-triggered earthquakes, we discussed the change of local stress field in different period. The σ1 of tectonic stress field was in the near-south direction, with a dip angle of 14° before the impoundment, however, the direction of σ1 of local stress field changed continuously, with the dip angle getting larger after the impoundment. The direction of σ1 of local stress field of reservoir-triggered earthquake clustering area is close to the strike of Weixi-Qiaohou Fault, and reservoir impoundment increased the shear stress in the fault, so the weakening of fault was beneficial to trigger earthquakes. Comprehensive analysis suggests that fluid permeation and pore pressure diffusion caused by the water impounding, and the weakening of fault caused by local stress field are the key factors to trigger earthquake in the Xiaowan reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号