首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
近50年环渤海地区夏季降水时空变化特征   总被引:3,自引:0,他引:3  
根据环渤海地区1961-2008年夏季60个测站逐日降水资料序列,使用EOF和REOF方法将环渤海地区划分为4个区域,分析了近50年来环渤海不同区域夏季降水的时空变化特征.结果表明,环渤海地区夏季降水存在明显的区域一致性以及年际和年代际变化特征,降水总体呈下降趋势;各区夏季降水都存在2~3年的年际周期,辽东半岛和环渤海北部区域存在10~11年、环渤海西部和山东半岛存在14~15年的年代际周期;辽东半岛在20世纪60年代后期,山东半岛在70年代初期都发生了降水由多到少的显著突变,而环渤海北部和西部地区在90年代后期降水出现显著突变.  相似文献   

2.
对欧亚大陆冬季地表温度南北反相的时空分布特征及机理的分析结果表明,欧亚大陆冬季地表温度约以55°N为界存在南北反相变化特征。1961~2015年欧亚大陆冬季地表温度变化具有显著的年际和年代际变化特征;年代际尺度上,北半球行星波"冬三"分布型变化与欧亚大陆地表温度南北反相变化密切联系。冬季欧亚地表温度南北反相变化存在明显的季节内转变。滤除年代际信号和全球变暖趋势后,欧亚大陆冬季地表温度与秋季北极海冰面积之间存在显著相关;北极海冰面积减小是欧亚、尤其中亚地区冬季地表温度降低的主要外强迫因素之一;同期北大西洋"三极子"和欧亚大陆冬季地表温度南北反相变化在年际尺度上存在显著相关。  相似文献   

3.
采用百分位法确定了极端温度事件,通过t检验法、气候倾向率分析了极端温度事件的年代际及年际变化特征,基于核密度估计方法揭示了四季极端温度事件年代际变化特征及城乡差异。结果表明:极端高温和低温日数分别呈现以增加为主和以减少为主的变化特征,这种趋势随时间增强,东部沿海地区最显著。四季极端高温日数增多、强度增大,夏季增多最多、冬季最少,强度增大在春冬季最强。四季极端低温日数减少、强度减小,冬季减少最多,强度减小在春季最强。浙西地区极端温度事件的年际变率小于浙东地区,浙江城市地区四季极端高温强度更强、极端低温强度更弱。  相似文献   

4.
江苏气温长期变化趋势及年代际变化空间差异分析   总被引:22,自引:1,他引:22  
根据江苏省60个气象站1961-2001年的逐月气温资料,研究了江苏气温的长期变化趋势和年代际变化特征的空间差异。结果表明:1)近40a来江苏省年平均气温升高了约1℃,其中冬季3个月(12月一次年2月)升温最明显,夏季7、8月降温明显。各季节和年平均气温年代际变化具有一定的相似性,基本上是20世纪60年代有降低趋势,70年代到80年代前期趋势不明显,80年代后期和90年代气温快速升高,因此,年、春、秋、冬季最高温度出现在90年代。其中夏季气温在90年代后期又有所下降,夏季最高出现在60年代。2)长期变化趋势和年代际变化在空间上也有一定的差异,这种差异主要表现在温度变化幅度上,春、秋、冬和年平均气温在全省都是升高的,其中苏南和江苏北部的徐连地区春、冬季和年平均气温升高最明显,秋季苏南地区升温最明显;夏季大部分地区气温有下降趋势,其中东部沿海和西南部降温最明显,而北部部分地区则有弱的升温趋势。  相似文献   

5.
1964—2005年辽宁第一对流层顶温度变化特征分析   总被引:3,自引:1,他引:2  
利用趋势分析、突变分析及小波分析方法对1964—2005年辽宁南部(大连)和北部(沈阳)第一对流层顶温度特征进行分析和比较。结果表明:近42 a,对于辽宁地区第一对流层顶温度,年、夏秋季平均值均呈升高趋势,春冬季平均值呈弱下降趋势;多年平均值的年变化表现为北部夏季最高、春季最低,南部秋季最高、春季最低;南部年、季的年际变化幅度均大于北部;年际变化幅度在南部夏季最大、春秋季次之、冬季最小,在北部夏季最大、冬季次之、春秋季差异不大;发生突变时段春夏季南部滞后于北部。在春季存在着3 a,6 a和18 a周期,其他季节周期变化南部较北部明显。  相似文献   

6.
东部夏季降水变化及其与北太平洋SSTA的联系   总被引:2,自引:5,他引:2  
采用REOF分析和小波变换方法对1900-1999年中国东部39站夏季降水资料进行分析,结果表明:华南、西南地区和长江中下游地区及华北、东北西南部地区是中国东部夏季降水异常3个最主要的区域,都存在显著的年际变化和年代际变化。分析了这3个区域夏季降水的年际、年代变化与北太平洋冬季海表温度异常的关系。  相似文献   

7.
基于1961~2017年青藏高原腹地雅鲁藏布江河谷地区4个站(拉萨、日喀则、泽当和江孜)夏季(6~8月)月平均气温、降水和相对湿度等观测资料,分析了该地区夏季气候年际和年代际演变特征,并探讨了气温、降水和相对湿度在年际和年代际时间尺度上的相互关系以及与总云量和地面水汽压的联系。结果表明:(1)1961~2017年该地区夏季气候出现了暖干化趋势。气温(相对湿度)显著升高(下降),降水趋势变化不明显;本世纪初气温(相对湿度)均发生了显著的突变。(2)该地区夏季气候因子间在年际和年代际时间尺度上存在密切关系:气温与相对湿度和降水均存在明显的负相关,降水与相对湿度为正相关。(3)该地区夏季气候因子间的年际和年代际变化与同期总云量和地面水汽变化有关。1961~2017年总云量持续减少是气温显著升高的主要原因之一,气温的显著升高和降水变化不明显又造成了相对湿度的显著下降。  相似文献   

8.
利用1979-2009年NCEP/CFSR全球大气边界层高度(PBLH)、感热通量月平均资料,运用多种统计方法,探讨了东亚地区大气边界层高度和感热通量的变化特征,并研究了两个要素场之间的相互关系。结果表明:夏季大气边界层高度东部增高、西部降低,而冬季则与夏季相反。夏季青藏高原地区感热有减少的趋势,其余地区以增加为主;冬季东部地区及新疆西部感热减少,其余地区感热增加。夏季奇异值分析第一模态表明青藏高原地区的感热通量减少时,相应地区的PBLH降低;内蒙古东部和东北地区的感热增加时,相应地区的PBLH增加。该空间型在一定程度上反映了青藏高原、内蒙古东部及东北地区,PBLH变化主要受地表加热影响,且年代际变化显著。夏季奇异值分析第二模态表明当青藏高原南侧、华北的感热增加(减少)时,相应地区的PBLH升高(降低),该空间型年际变化较显著,一定程度上反映了大气边界层高度及感热在高原主体及其南侧分布的差异。冬季奇异值分析第一模态主要表现为在我国东西部反相变化的分布;冬季奇异值分析第二模态表现为华北和华东地区与其余地区反相相关的分布。冬季两个空间型均具有一定的年代际变化特征。在青藏高原及其南侧和西北干旱半干旱区部分地区,PBLH变化主要受地表加热的影响,而在东部季风区,感热变化仅是影响PBLH变化的因素之一。  相似文献   

9.
我国四季极端雨日数时空变化及其与海表温度异常的关系   总被引:3,自引:0,他引:3  
利用1960—2004年我国586个气象站的逐日降水观测资料,对每个季节和每个站点,以雨日降水量升序排列的第90个百分位值定义极端日降水阈值,分析揭示了我国四季极端雨日数的时空变化特征、与海表温度异常的关系以及相联系的大气环流异常型。结果表明,我国长江流域极端雨日数在冬季和夏季呈显著增加趋势,华北地区极端雨日数在冬季显著增加、而在夏季显著减少,华南地区极端雨日数在春季显著增加,东北地区极端雨日数在冬季和春季显著增加,而西北地区极端雨日数在四季均显著增加。各季极端雨日数在线性趋势变化之上表现年际和年代际变化特征,并且其典型异常型明显不同,春、秋季表现为长江以南与以北地区反位相的"偶极型"变化,夏季表现为长江流域与华南、华北地区反位相的"三极型"变化,冬季表现为全国大部分地区同位相的"单极型"变化。我国季节极端雨日数与印度洋-太平洋海表温度异常的关系主要表现为与ENSO的关系,而ENSO影响我国极端降水异常是通过相应的大气环流异常型来实现的。  相似文献   

10.
利用NCEP/NCAR再分析资料、北极涛动(AO)指数序列及中国160个台站月温度资料,分析1951-2007年中国冬季气温与AO指数的变化特征及其相互关系。结果表明:1951-2007年AO与中国东部地区冬季气温基本呈正相关关系。中国东部地区冬季气温指数(IWT)与北极涛动指数(IAO)均逐渐增强,并有显著的年际和年代际变化,均存在准18 a的周期变化特征。从偏相关系数来看,在年际尺度上,西伯利亚高压对中国东部地区冬季气温的年际变化影响较大,而AO与冬季气温无显著相关关系;在年代际尺度上,AO对中国东部地区冬季气温的影响较显著,比西伯利亚高压影响大。东亚大槽偏弱时,中国冬季气温偏高,AO指数也偏高,反之则相反。在年际尺度上,东亚大槽对中国东部地区冬季气温的年际变化影响较大,而AO与冬季气温无显著相关关系;在年代际尺度上,AO和东亚大槽对中国冬季气温的变化影响均较显著。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号