首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
川东洪水和致洪暴雨分析预报   总被引:1,自引:0,他引:1  
分析了长江上游的川东地区洪水和致洪暴雨特点,提出了致洪暴雨的环流天气概念模型,预报致洪暴雨及洪水等级。  相似文献   

2.
通过淮河上游流域历次强降水及其致洪情况的分析,探讨强降水过程与洪水发生的规律,从而确定这一地区致洪暴雨标准,并用分区和时间滑动累加计算的方法,计算空域面雨量累加值,导出致洪暴雨指数。从天气气候普查,得出产生这一地区致洪暴雨的四个类型天气系统,从中选取各类典型致洪暴雨个例,用天气分析和数值预报释用结合的方法,建立暴雨的短期预报模式,并对洪峰涨势进行估计。  相似文献   

3.
夏季中国南方流域性致洪暴雨与季风涌的关系   总被引:28,自引:1,他引:28  
陶诗言  卫捷 《气象》2007,33(3):10-18
中国淮河以南地区夏季最易受到洪水灾害的威胁,这种致洪暴雨一般出现在沿着河谷走向的静止锋上。在引发致洪暴雨的环流系统中,季风涌的作用非常重要,它提供了暴雨产生所必须的水汽。分析了1998、2003、2005及2006年中国南方流域性致洪暴雨和东亚季风涌,以及与赤道附近大气环流的30~60天振荡(称作Madden—Julian Oscillation,简称MJO)活动的关系。当来自赤道印度洋的MJO引起南海地区西风的加强;南海西风的加强,触发中国南部大陆出现季风涌;季风涌与来自北方的冷空气交绥,造成静止锋上的致洪暴雨。由此提出我国南方夏季流域性致洪暴雨中、短期预报的基本思路。  相似文献   

4.
长江三峡致洪暴雨及其产生背景   总被引:1,自引:0,他引:1  
周允中  杨秀海 《气象科学》1990,10(4):416-422
本文从长江三峡洪水来确定暴雨过程(致洪暴雨),讨论了致洪暴雨与前期流量、暴雨持续天数的关系。对产生最强暴雨日的天气系统进行了分类,並指出台风、副高脊的活动与致洪暴出现及落区之间的关系。  相似文献   

5.
洪水是夏季一种突发性强的自然灾害,天山山区暴雨落区预报十分困难。本文对2002年7月下旬渭干河流域特大致洪暴雨的成因进行天气动力学分析和诊断,试图建立该地区盛夏暴雨落区的预报指标。  相似文献   

6.
用天气学原理,分析环流背景与天气形势,及有关的一些物理量场,指出时间相隔不长的两次持续性暴雨过程形成的洪水相叠加是造成梧州6.23特大洪水的主要原因,洪峰水位还与致洪暴雨的落区和移向有关,致洪暴雨是副高在南海北部维持和低空急流在广西上空存在等有利的天气形势下形成的。  相似文献   

7.
6.23梧州特大洪水气象成因初探   总被引:1,自引:0,他引:1  
卢建壮 《广西气象》2006,27(1):17-19
用天气学原理,分析环流背景与天气形势,及有关的一些物理量场,指出时间相隔不长的两次持续性暴雨过程形成的洪水相叠加是造成梧州6.23特大洪水的主要原因,洪峰水位还与致洪暴雨的落区和移向有关,致洪暴雨是副高在南海北部维持和低空急流在广西上空存在等有利的天气形势下形成的。  相似文献   

8.
应用面雨量分析了致洪暴雨的特点,对郁江南宁段洪涝过程的面雨量和洪水水位进行分析,研究了流域的面雨量与洪水水位的关系,提出了致洪面雨量的条件,给预报决策服务提供参考。  相似文献   

9.
南宁致洪暴雨面雨量特征分析   总被引:5,自引:1,他引:5  
应用面雨量分析了致洪暴雨的特点,对郁江南宁段洪涝过程的面雨量和洪水水位进行分析,研究了流域的面雨量与洪水水位的关系,提出了致洪面雨量的条件,给预报决策服务提供参考。  相似文献   

10.
柳江致洪暴雨及其影响系统统计特征分析   总被引:2,自引:0,他引:2  
通过对柳江流域历年25个致洪暴雨过程进行统计分析,发现柳江流域致洪暴雨主要发生于6~7月,20世纪90年代后柳江致洪暴雨的发生频率和强度都有增加的趋势,柳江东北部流域和西部流域是柳江洪水的主要来源地,分析还发现柳江致洪暴雨的主要影响系统有高空槽(南支槽)、低涡、低层切变线、地面静止锋、低空急流、副热带高压等6种,可分为低槽切变类、低涡切变类和低空急流切变类三种类型。  相似文献   

11.
南沙海域大气湍流通量输送特征分析   总被引:23,自引:1,他引:23  
利用1994年9月在南沙群岛的渚碧礁(10°52′N,114°04′E)观测的湍流资料,采用涡旋相关法计算,给出了南沙海域的曳力系数,动量通量,感热通量和潜热通量,并与其它海气相互作用实验及HEIFE的结果作了比较,结果表明,该海域的曳力系数CD=(1.54±0.24)×10^-3。大气向海洋输送动量通量与水平风速挟方成正比,该海区无论白在还是晚上都是将其贮存的热量以潜热或感热的形式输送到大气中。  相似文献   

12.
In this paper, interactions between the 30-60 day oscillation, the Walker circulation and the convective activities in the tropical western Pacific during the Northern Hemisphere summer are analyzed by using the observed data of wind fields and high-cloud amounts for the period from 1980 to 1989.The analyzed results show that the 30-60 day oscillation (hereafter called LFO) may be largely affected by the convective activities in the tropical western Pacific. The LFO in the tropical western Pacific during the strong convective activities around the Philippines stronger than those during the weak convective activities around the Philippines. Moreover, in the case of strong convective activities around the Philippines, the LFO in the tropical west-ern Pacific and tropical eastern Indian Ocean generally propagates westward, and it is intensified by the LFO with a westward propagating center of maximum oscillation from the east to 140oE. However, in the case of weak convective activities around the Philippines, the LFO gradually becomes stronger with a eastward propagating center of maximum oscillation from the eastern Indian Ocean to the tropical western Pacific.Corresponding to the 30-60 day oscillation, the Walker circulation is also in oscillation over the tropical Pacific and its circulation cell seems to shift gradually westward from the tropical western Pacific to the tropical eastern In-dian Ocean with strong convective activities around the Philippines. This may maintain the intensification of convective activities there. However, during the weak convective activities around the Philippines, the Walker circula-tion gradually moves eastward and an ascending flow may appear in the equatorial central Pacific. This may cause convective activities to be intensified over the equatorial central Pacific.The analyzed results also show that the LFO in the tropical western Pacific and East Asia may be associated with the interannual oscillation of the SST anomaly in the tropical western Pacific.  相似文献   

13.
Interactionsbetweenthe30-60DayOscillation,theWalkerCirculationandtheConvectiveActivitiesintheTropicalWesternPacificandTheirRe...  相似文献   

14.
吴洪  林锦瑞 《高原气象》1997,16(4):433-439
采用分层浅水波方程组和WKB方法,分别讨论了经向基流的垂直切变和南北走向的地形对二维惯性重力波的移速,稳定性以及发展的影响。  相似文献   

15.
利用1961-2000年6-9月淇,卫河流域降水资料,采用单元综合评判法确定流域暴雨日,并对暴雨日进行分型,确定暴雨预报天气学指标,建立暴雨预报方法。  相似文献   

16.
傅立叶相位分析导风技术中的频谱分析   总被引:1,自引:0,他引:1  
许建明  王振会 《气象科学》2005,25(5):499-504
本文介绍了应用于傅立叶相位分析导风技术中的DFT变换理论,并模拟分析DFT计算中的频谱分离和混叠两种现象及其对导风的影响。结论认为,傅立叶导风技术不需要计算所有谐波的相位,只要计算分离区或混叠区之前的低次谐波的相位,这些低次谐波的相位速度与真实速度一致,且与谐波振幅和初相位的取值无关,可用于风速计算。  相似文献   

17.
《Climate Policy》2013,13(4):387-393
Abstract

Russia has a crucial veto on the entry into force of the Kyoto Protocol. The preparation of the ratification and institutional reform have begun in April 2002. The ratification process is based on the activities by high-level policy makers who have other priorities, federal level institutional actors which may be unclear about their roles and the few overloaded expert civil servants. After the US withdrawal from Kyoto, arguments against ratification have appeared in the Russian debate, mostly based on the lack of clarity of the economic benefits available. Ratification would require Russia to establish an eligibility strategy under Kyoto and divide responsibilities and rights between the government, regional and private sector actors. The legal procedure of ratification is simple but internal political complexities may delay the process.  相似文献   

18.
洪泽湖枯水年比较及与ENSO事件关系   总被引:3,自引:2,他引:3       下载免费PDF全文
本文利用1954-1999年洪泽湖水文资料,总结出1999年干旱年汛期湖水入不敷出属历史旱年罕见。同时对湖区的干旱年与ENSO事件关系作了初步研究,得出拉尼娜事件结束的当年和次年洪泽湖都不会出现干旱年。  相似文献   

19.
亚洲热带夏季风的首发地区和机理研究   总被引:28,自引:5,他引:28  
文中分析了多年逐候平均 85 0hPa风场和黑体辐射温度等物理量的时空演变 ,结果表明 ,90°E以东的孟加拉湾、中南半岛和南海是亚洲热带夏季风首先爆发的地区 ,爆发时间在 2 7~ 2 8候 ,具有突发性和同时性。 90°E以西的印度半岛和阿拉伯海是热带夏季风爆发较晚的地区 ,季风首先在该区 10°N以南爆发 ,时间约在 30~ 31候 ,然后向北推进 ,6月末在全区建立 ,爆发过程具有渐进性。机制分析表明 ,由于 110~ 12 0°E的中高纬东亚大陆在春季和初夏地面感热通量、温度和气压的迅速变化 ,使热带低压带首先在该处冲破高压带 ,生成大陆低压 ,并引导西南气流在 90°E以东地区首先建立。在 90°E以西的印度半岛地区 ,地面感热通量在 4~ 5月间几乎没有明显变化 ,因而印度季风比南海季风晚爆发约 1个月。由此得出 ,90°E是东亚夏季风和南亚夏季风的分界线。此外 ,还着重探讨了南亚高压的季节变化与亚洲热带夏季风爆发的时间联系。发现南亚高压中心位置与亚洲热带夏季风爆发时间有较好的对应关系。南亚高压中心跳过 2 0°N时 ,南海夏季风爆发 ,跳过 2 5°N时 ,印度夏季风在其南部爆发。将用上述方法确定的爆发时间与用其他方法确定的爆发时间相比较 ,发现它们在南海地区有较好的一致性 ,在印度地区略有差异。  相似文献   

20.
Lagrangian particle tracking is implemented for the Lofoten Basin of the Norwegian Sea. The ocean dynamic fields are obtained from the GLORYS 12V1 reanalysis available by the Copernicus Marine Environment Monitoring Service. Spatial distributions of the Lagrangian particles during May-November 2014 are analyzed for two depth layers: the sea-surface (0.5 m) and 266 m. The results show a significant impact of the Norwegian Coastal Current (NCC) on the thermohaline structure of the upper Lofoten Basin, underestimated previously. The NCC penetrates deep into the central Lofoten basin as far as the longitude 0°. In the subsurface layer, the area over which the NCC influences water structure is comparable to the area of the Norwegian Atlantic Slope Current (NASC), as well as to that of the Norwegian Atlantic Frontal Current (NAFC). The NCC maximum influence on the surface water of the Basin is reached in August. The inflow of the NCC is associated with relatively fresh water intrusions (0.5–2‰ fresher than the surrounding waters) moving from the coast to the central part of the Basin. The NASC and NAFC form two main sources of the Atlantic Water in the Lofoten Basin. At 266 m level, the NASC and NAFC waters dominate water structure in the basin. Herewith the NASC influence prevails over that of the NAFC, the latter being limited to the western periphery of the Basin. At this level, the NCC is observed only along a narrow band following the eastern coast. During summer, the core of the Lofoten Vortex (LV) at 266 m is mainly composed of the NAFC water. This fact contradicts the previous point of view of the dominance of the NASC in the LV core at all depth levels. Using two types of Lagrangian maps, we highlighted the summer and the autumn periods in the LV annual lifecycle. The summer LV is characterized by high orbital velocities, which are several times higher than those of the currents along the basin boundaries. The monthly mean orbital velocities in the LV reach 35 сm s−1. To the end of autumn, the LV weakens with the monthly mean orbital velocities below 10 cm s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号