首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ningwu Basin is one of the Mesozoic continental volcanic basins in the middle and lower reaches of the Yangtze River.The volcanic rocks of the Longwangshan,dawangshan,Gushan and Niangniangshan formations,as well as the homologous subvolcanic rocks or small intrusions,are developed from old to new in the Ningwu Basin.Zircon U-Pb dating results show the latialite phonolite of Niangniangshan Formation was erupted at 128±1 Ma(i.e.,Early Cretaceous).The latialite phonolite contains moderate SiO2 contents(57.28%-60.96%)with high Na 2O+K 2O contents,belonging to shoshonite series.The samples have high REE contents,and display right-inclined REE distribution pattern.They are characterized by enrichment in some large ion lithophile elements(e.g.,LILEs,Rb,K),and depletion in some high field strength elements(e.g.,HFSEs,Nb,Ta,Ti).All volcanic samples have relatively depleted Nd isotopic compositions(ISr=0.707197--0.707878;εNd(t)=-0.5--0.9),indicating no genetic relationship with the lower crust of Yangtze plate,but a drift trend towards the EMII.The geochemical data suggest that the Early Cretaceous latialite phonolite was derived from the partial melting of an enriched lithospheric mantle metasomatized by subduction-related fluids in an arc-related setting.Based on the temporal and spatial distribution and geochemical variation characteristics of the regional volcanic rocks,it is suggested that the tectonic system within the study area changed from a subduction-related compression to an extensional environment in the early Early Cretaceous,which was caused by the ridge subduction of the Paleo-Pacific Ocean.  相似文献   

2.
楠溪江中下游地区发育大面积中生代火山-沉积岩系。可分为晚株罗世和早白垩世两个时代的不同火山岩系,其岩石化学、地球化学、同位素等均具不同的演化规律和模式,岩浆来源也有区别。粗安质或粗面质火山岩的发育可能是浙东南沿海白垩纪火山岩的一个特色。  相似文献   

3.
A number of isolated fault sags in Late Jurassic--Early Cretaceous were developed in the early stage of southern Songliao Basin,and unified to a depression basin in the late stage.Therefore,multiple isolated lower petroliferous systems were formed with fault sags as source rocks.The source rocks of fault sags in Late Jurassic--Early Cretaceous were mainly described with gas generation as favorable source rocks,leading to the southern Songliao Basin rich in natural gas resources combined with organic gas resources in Nenjiang Formation.A number of tectonic movements in southern Songliao Basin led to the formation of abundant structural traps and complex fault systems,and controlled the distribution strata and positions of sources rocks in Late Jurassic--Early Cretaceous fault sags.The oil-gas reservoirs can be divided into two types,i.e.,primary and secondary ones.The primary oil-gas reservoirs were distributed in the fault sag strata and the bottom of overlying depression strata(lower Quan-1 Member).The oil-gas reservoir accumulation depended on the trap development situation and the distance from source rocks.The preservation conditions of oil-gas reservoirs depended on the degree of reconstruction in the late tectonism.The secondary oil-gas reservoirs were distribution in the Quantou Formation of depression strata,where oil and gas reservoir accumulation depended on three conditions,i.e.,trap development situation,deep gas sources and the fault to connect the shallow traps and deep gas sources.The southern Songliao Basin is rich in lower coal type gas,upper oil-gas and biogas resources,which are important resources in the future.  相似文献   

4.
The Changling gas field is occurs in tight sandstone reservoirs of the Lower Cretaceous Denglouku Formation in the Changling fault depression , southern Songliao Basin , China, which constitutes a new gas-pro-ducing area in the depression .Using information on the source-reservoir-cap rock assemblage of the Denglouku Formation, fault activity, and single well burial history of well CS 1, together with data on reservoir fluid inclu-sion and laser Raman spectroscopy , we described the formation of the Changling gas field and determine that this fault depression did not possess suitable conditions for hydrocarbon generation .Coal-derived methane gen-erated from underlying hydrocarbon source rock accumulated in the Lower Cretaceous Yingcheng Formation .At the end of the Late Cretaceous Qingshankou Stage , underwater volcanic eruptions occurred in the northern part of the Changling gas field near Qian'an, resulting in the reactivation of deep faults .Mantle-sourced inorganic CO2 migrated along faults to hydrocarbon gas reservoirs in volcanic rocks of the Yingcheng Formation ;Mean-while, displaced methane ( hydrocarbon gas ) migrated upward to sand reservoirs of the Denglouku Formation . The methane accumulated and formed secondary gas reservoirs ,Therefore fault activity was the main factor con-trolling the generation of gas reservoirs in the Denglouku Formation .The main accumulation period of the Yingcheng hydrocarbon gas reservoirs was 82 Ma.Whereas gas reservoir formation in the overlying Denglongku Formation was 79 Ma, slightly later than the time of formation of the Yingcheng gas reservoir in CS 1 well area. At 79 Ma, the burial depth of the Denglouku Formation was 1800-2000 m, the diagenesis is relatively weak and the physical properties of the reservoir are relatively favorable for accumulation .This period is not only at gas generation peak time of three sets of source rock but also at the reactivation of deep faults during the forma -tion of fault-bound depressions , thereby providing favorable conditions for the migration and accumulation of methane .  相似文献   

5.
鲁西太古代徂徕山杂岩体主要由片麻状花岗岩和钾长花岗岩构成,此外尚发育少量小规模的中粗粒、细粒闪长岩。本文着重讨论花岗质岩石的成因。徂徕山杂岩体岩石地球化学研究表明,片麻状花岗岩为深源(下地壳)花岗质岩浆侵位结晶的产物;钾长花岗岩是片麻状花岗岩在区域变质作用过程中部分熔融形成的,两者具有密切的成因联系。  相似文献   

6.
安徽南陵-宣城地区是一个中-新生代火山-沉积盆地,位于长江中下游构造-岩浆-成矿带东北段的东南翼。对该区发育的岩浆岩开展了较为系统的LA-ICP-MS锆石U-Pb定年及岩石主量、微量和稀土元素分析,并与长江中下游构造-岩浆-成矿带其他地区岩浆岩进行对比,旨在确定岩浆岩的成岩时代、探讨岩浆岩成因及其与成矿的关系。南陵-宣城地区岩浆岩一部分侵入于盆地基底中,另一部分喷发形成盆地盖层,还有一部分产于盆地之上的推覆构造(体)中。侵入岩的岩性主要为花岗岩、花岗闪长岩、石英闪长岩、辉石闪长岩等,火山岩主要为英安质火山碎屑岩和熔岩。获得的侵入岩锆石U-Pb年龄主要为138~135 Ma,火山岩年龄均小于134 Ma,表明岩浆作用发生于晚中生代(燕山晚期)早白垩世。岩浆岩主量元素显示高Si、K的特征,为亚碱性高钾钙碱性系列岩石;微量元素组成显示岩浆岩富集Rb、Th、U、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,火山岩比侵入岩较为亏损Sr和P;球粒陨石标准化稀土元素配分模式均表现为富集轻稀土元素的右倾模式和较弱的Eu负异常。元素地球化学特征指示区内岩浆岩具有壳幔混源且以幔源为主的特征。南陵-宣城地区既发育与长江中下游构造-岩浆-成矿带隆起区(如铜陵地区)同位素地质年龄和地球化学特征基本一致的侵入岩,又发育与凹陷区(如庐枞、宁芜等盆地)同位素地质年龄和地球化学特征基本一致的火山-次火山岩,显示该区晚中生代岩浆作用具有长江中下游构造-岩浆-成矿带隆起区和凹陷区的双重特征。岩浆作用的双重特征暗示与其有关的成矿作用也可能具有双重性,即既可能发育与隆起区侵入岩浆作用有关的斑岩型、矽卡岩型和脉型铜金等多金属矿床,也可能发育与凹陷区火山-次火山岩有关的玢岩型铁(硫)矿床。  相似文献   

7.
The Cretaceous of Afghanistan is marked by great facies diversity. The evolution of Cretaceous basins is part of a complex accretionary history involving three distinct tectonic units namely the Asian (Russian) Block separated from the Indian plate by a rather well defined transcurrent fault (Chaman-Nuski). The southwestern component is representedby the Iran-Afghanistan plate. The Lower Cretaceous of the Asian Block is represented by the Red-Grit Series which isconformable to the underlying Upper Jurassic sequences. The transition is marked by evaporitic facies dominated by salt,gypsum and marl deposits. In south Afghanistan volcanic rocks occur at Farah, with the emplacement of plutonics inwest-central Afghanistan. The Upper Cretaceous of north Afghanistan is marked by richly fossiliferous, lime stone-dominated sequences. The Upper Cretaceous of southern Afghanistan is marked by strong ophiolitic magrmatism.  相似文献   

8.
早石炭世巴塔玛依内山组为一套陆相火山岩,下部以基性熔岩为主,上部以中酸性、酸性火山碎屑岩为主.岩石地球化学研究表明,区内火山岩呈高铝玄武岩-安山岩-英安岩-流纹岩钙碱性系列的演化趋势.从基性岩到酸性岩稀土模式相似,但铕负异常愈加明显.火山活动与金银矿成矿关系密切,玄武岩类、火山碎屑岩类Au、Ag、As含量较高,可能是成矿物源.  相似文献   

9.
This paper reports lithologic features,K--Ar age and geochemical data of riebeckite granophyres from Aliwula area in the southern Da Hinggan Mts.,aiming to reveal the petrogenesis of riebeckite granophyres.K-Ar age of riebeckite granophyres is 126 ± 2 Ma,implying that the riebeckite granophyres formed in the Early Cretaceous.The granophyres are rich in riebeckites and with a lot of melt-fluid inclusion in its quartz phenocrysts.The granophyres are characterized by extensive enrichment in SiO2,FeO,and(Na2O+K2O) and depletion in MgO and CaO,strong negative Eu anomalies and strong positive Ce anomalies.Additionally,the riebeckite granophyres not only have high total REE contents and display enrichment of HFSEs(for example Zr,Hf,Nb,Ta),but also are strong in depletion of LILEs(e.g.Ba,Sr) as well as high Ga /Al ratios.Primitive mantle-normalized REE pattern significantly displays REE M--W tetrad effect.REEs fractionate evidently and highly enrich in LREE,but are uneven distribution in the rocks.Taken together,we conclude that the riebeckite granophyres are similar to typical A-type granite,which could be derived from stretching environments in the Early Cretaceous.The granophyres originated from residual melt which underwent highly differentiation process,and were formed in magmatic-hydrothemal transition stage at last.  相似文献   

10.
额尔古纳地区中生代火山活动强烈,其主要的活动期间为晚侏罗世至早白垩世(150~100Ma)。根据新的岩石化学、稀土、微量元素、稳定同位素、构造等方面的分析结果得出以下认识:1.该区中生代火山岩来源较深,具幔源特征,岩浆形成在总体呈挤压背景的环境中,使得岩浆在演化过程中混入了大量的壳源物质;2.中生代火山岩大致分两个亚旋回,其中塔木兰沟组(J3t)火山岩和上库力组(K1s)火山岩是同一岩浆亚旋回的产物。  相似文献   

11.
Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions.Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ12C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb,suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.  相似文献   

12.
Early Cretaceous A-type rhyolites of the Shangkuli Formation in the Hailar Basin of NE China exhibit geochemical characteristics of high silicon, alkali, Fe/Mg, Ga/Al, Zr, Pb, HFSEs, and REE contents but low Ca, Ba, Sr and Eu, which meet the criteria of typical reduced A-type granite.The A-type rhyolites are most probably derived from magmatic underplating and partial melting of quartz-feldspathic lower crust, with the lithospheric mantle material involved, due to the extensional deformation of the Erguna-Hulun Fault.Although the A-type rhyolites show A1-type trace elements characteristics, they were formed in a post-orogenic extension-al background together with the coeval widespread bimodal volcanic rocks, metamorphic core complexes, vol-canic fault basins and metallogenic province in the Sino-Russia-Mongolia border tract.This extension event was related to the collapse of thickened region of the continental crust after the closure of the Mongol-Okhotsk Ocean.  相似文献   

13.
Wangjiatun gas pool is located at the north part of Xujiaweizi in Songliao basin. Commercial gas flow has been found in the intermediate and acid volcanic rock of upper Jurassic - lower Cretaceous, which makes a breakthrough in deep nature gas prospecting in Songliao basin. The deep natural gas entrapment regularity is discussed in the paper by the study of deep strata, structure and reservoir. Andesite, rhyolite and little pyroclastic rock are the main reservoirs. There are two types of volcanic reservoir space assemblage in this area: the pore and fissure and the pure fissure. Changes had taken place for volcanic reservoir space during long geologic time, which was controlled by tectonic movement and geologic environment.The developed degree of reservoir space was controlled by tectonic movement, weathering and filtering, corrosion and Filling. There are three types of source- reservoir-caprock assemblage in this area: lower source- upper reservoir model,upper source - lower reservoir model and lateral change model. Mudstone in Dengluoku formation and the compacted volcanic rock of upper Jurassic - lower Cretaceous are the caprock for deep gas reservoirs. Dark mudstone of deep lacustrine facies in Shahezi formation and lower part of Dengluoku formation are the source rock of deep gas. It can be concluded that deep gas pools are mainly volcanic lithologic reservoirs.  相似文献   

14.
Cai  Laixing  Xiao  Guolin  Zeng  Zhigang  Zhang  Xunhua  Guo  Xingwei  Wang  Shuping 《中国海洋湖沼学报》2020,38(4):1169-1187
The South Yellow Sea Basin(SYSB) has multiple sets of proven source rocks and good hydrocarbon prospects,but no industrial oil and gas has been explored at present.To solve this puzzle for petroleum geologists,we systematically investigated the marine hydrocarbon geological conditions based on cores and testing data from borehole CSDP-2,the first exploration well with continuous coring in SYSB.The qualities of source rocks are evaluated in detail according to organic matter abundance,type,and maturity.The reservoir characterization mainly includes porosity,permeability,and reservoir space.Displacement pressure test and stratum thickness are the main foundations for defining the caprocks.Then,the oil-source rock correlation in the Permian and stratum model are analyzed to determine the favorable source-reservoir-caprock assemblages.The results show that three sets of effective source rocks(the Lower Triassic,Upper Permian,and Lower Permian),two sets of tight sandstone re servoirs(the Upper Permian and Lower Silurian-Upper Devonian),and two sets of caprocks(the Lower Triassic and Carboniferous) combine to constitute the hydrocarbon reservoir-forming as se mblages of "lower-ge neration and upper-accumlation" and "self-generation and self-accumlation",thus laying a solid foundation for promising petroleum prospects.The three sets of marine source rocks are characterized by successive generation and expulsion stages,which guarantees multistage hydrocarbon accumulation.Another three sets of continental source rocks distributed across the Middle Jurassic,Upper Cretaceous,and Paleogene depression areas,especially in the Northern Depression,may supplement some hydrocarbons for the Central Uplift through faults and the Indosinian unconformity.The favorable Permian exploration strata have been identified in the Central Uplift of SYSB.First,the Lower Permian and Upper Permian source rocks with high organic matter abundance and high thermal maturity supply sufficient hydrocarbons.Secondly,the interbedding relationship between the source rocks and sandstones in the Upper Permian strata ensures that hydrocarbons have been migrated into the nearby Upper Permian sandstones,reflecting near-source hydrocarbon accumulation.Finally,the good sealing property of the Lower Triassic Qinglong Formation caprocks plays an indispensable role in hydrocarbon preservation of the Permian reservoirs.This conclusion is supported by direct oil shows,gas logging anomalous layers,and hydrocarbon-bearing fluid inclusions.  相似文献   

15.
The paper describes the sedimentary features and biostratigraphy of the transitional Jurassic to Cretaceous deposits in the continental basins of Priamurie formed after the collision between the Siberian and North China blocks. In Upper Priamurie, the collision occurred in the late Early Jurassic as dated by the emplacement of the post-collisional granites (191Ma) . While in Lower Priamurie and West Priokhotie it could take place in the late Middle Jurassic on the basis of fossil evidence from an accretionary turbidite complex. This event reflected the environmental change from coastal-marine to alluvial plains, often boggy, where coals accumulated. The environmental change is in harmony with that of biota. Systematic study of floral and spores/pollen assemblages, particularly in the sections of interbedded marine and non-marine deposits, makes clear the chronostratigraphic succession of floral associations and shows the possibility of their application for subdivision and correlation of the continental deposits of Priamurie. The coastal-marine environment of the residual post-collisional sublatitudinal basins in the western part of Priamurie (Upper Amur and Dep basins) was replaced by the continental in the late Middle Jurassic and in the eastern part in the Berriasian-Valanginian ( Torom Basin) . Similar environmental change commenced in the submeridional rift basins: the Bureya Basin in the Callovian and the Partizansk Basin in the Hauterivian. Changes in ecosystems occurred frequently during theMiddle Jurassic-Neocomian, but the most substantial changes took place in the late Middle Jurassic and in the end of Late Jurassic.  相似文献   

16.
Volcanic rocks of the late Mesozoic are very important reservoirs for the commercial natural gases including hydrocarbon, carbon dioxide and rare gases in the northern Songliao Basin. The reservoir volcanic rocks include rhyolite, andesite, trachyte, basalt and tuff. Facies of the volcanic rocks can be classified into 5 categories and 15 special types. Porosity and permeability of the volcanic reservoirs are facies-controlled. Commercial reservoirs were commonly found among the following volcanic subfacies: volcanic neck (I1) , underground-explosive breccia (I3), pyroclastic-bearing lava flow (II3), upper effusive (III3) and inner extrusive ones (IV1). The best volcanic reservoirs are generally evolved in the interbedded explosive and effusive volcanics. Rhyolites show in general better reservoir features than other types of rocks do.  相似文献   

17.
Volcanic rocks of the late Mesozoic are very important reservoirs for the commercial natural gases including hydrocarbon, carbon dioxide and rare gases in the northern Songliao Basin. The reservoir volcanic rocks include rhyolite,andesite, trachyte, basalt and tuff. Facies of the volcanic rocks can be classified into 5 categories and 15 special types.Porosity and permeability of the volcanic reservoirs are facies-controlled. Commercial reservoirs were commonly found among the following volcanic subfacies: volcanic neck (Ⅰ1), underground-explosive breccia (Ⅰ3), pyroclastic-bearing lava flow (Ⅱ3), upper effusive (Ⅲ3) and inner extrusive ones (Ⅳ1). The best volcanic reservoirs are generally evolved in the interbedded explosive and effusive volcanics. Rhyolites show in general better reservoir features than other types of rocks do.  相似文献   

18.
In the Korean Peninsula the Meso-Cenozoic basins were mainly formed due to fault block and block movement. The Mesozoic fracture structures correspond basically to modern large rivers in direction. Such faults were usually developed to rift and formed lake-type tectonic basin, such as the Amrokgang-, Taedonggang-, Ryesonggang-, Hochongang-, Jangphari-, Susongchon-, Pujon-, and Nampho basins. The Mesozoic strata are considered to be divided into the Lower Jurassic Taedong System, Upper Jurassic Jasong System, Upper Jurassic-early Lower Cretaceous Taebo System, and the Upper Cretaceous-Paleocene (Chonjaebong, Hongwon, Jaedok Series) . The Cenozoic block movement succeeded the Mesozoic fault block movement. The Kilju-Myonchon Graben and Tumangang Basin, etc, are the basins related to the fault zones developed from the Oligocene to Miocene. In addition, the Tertiary basins were formed in many areas in the Miocene ( e. g. Sinhung, Oro, Hamhung, Yonghung, Anbyon, Cholwon, etc) . The Cenozoic sedimentation occurred mainly from the late Oligocene to Miocene. The Kilju-Myongchon Graben was the fore deep connected to the sea and the basins inclined in the Chugaryong Fault Zone are intramountain basins. Therefore, coal-bearing beds and clastic rocks in the intramountain basins and rare marine strata and terrigenous clastic rocks are main sedimentary sequences in the Cenozoic.  相似文献   

19.
根据砂岩岩石薄片、石英阴极发光和重矿物组合分析,结合沉积构造及地震解释成果,对塔里木盆地库车坳陷东部上三叠统—中侏罗统物源体系及其演化进行详细分析,确定了物源方向及母岩性质。结果表明:塔里木盆地库车坳陷东部上三叠统—中侏罗统物源主要来自北部南天山造山带物源区,以岩浆岩和变质岩母岩为主,兼有少量沉积岩物源的影响。其中,塔里奇克组砂岩中陆源碎屑岩岩屑含量较高,阴极发光条件下不发光石英含量较高,重矿物组合具有高锆石、白钛矿和磁铁矿含量以及低石榴子石含量的特征,母岩可能为上奥陶统—上三叠统早期沉积;阿合组及阳霞组砂岩中岩浆岩岩屑含量升高,重矿物组合以较高的石榴子石含量为特征,阴极发光条件下石英主要为蓝紫色及棕褐色发光,其母岩主要来自二叠系及其下伏地层;克孜勒努尔组及恰克马克组砂岩中变质岩岩屑含量明显升高,石榴子石含量极高,阴极发光条件下棕褐色发光石英含量增多,表明变质岩母岩的影响增强。晚三叠世—中侏罗世,研究区物源区母岩演化具有明显规律性,即晚三叠世受较多沉积岩母岩影响,早侏罗世岩浆岩母岩供给增多,中侏罗世以变质岩母岩为主。晚三叠世,库车坳陷东部南天山造山带大幅抬升,导致大量变质岩母岩卷入造山带遭受剥蚀;早—中侏罗世,南天山造山带中段构造活动具有东西分段的特点,吐格尔明30团剖面以东早侏罗世砂岩率先具有高石榴子石含量的特点,而西部地区中侏罗世砂岩才大量出现石榴子石,表明南天山造山带中段的虎拉山及额尔宾山在早侏罗世隆升-剥蚀强烈,而哈尔克山在中侏罗世才进入强烈抬升期。  相似文献   

20.
辽西中生界义县组时代归属问题 ,争论已久 ,归纳起来主要有三种划分方案 :第一 ,隶属于侏罗纪 ;第二 ,隶属于白垩纪 ;第三 ,归属于为侏罗 -白垩纪 ,属跨纪地层。结合多年来各科研院所及生产单位采集的众多同位素年龄资料的分析及野外所见接触关系研究认为 :原义县组中下部层位岩性组合 ,根据其特征 ,需另建立组级岩石单位 ,应归属到上侏罗统 ,广义义县组上部层位一套岩性组合 ,需重新定义 ,时代应归属到下白垩统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号