首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   

2.
Strong negative cerium anomalies are developed in the saprolite zone of two serpentinite lateritic profiles in the Mada region of the Kongo–Nkamouma massif in the Lomié ultramafic complex (South-East Cameroon).The total lanthanide contents increase strongly from the parent rock (1.328 ppm) to the weathered materials (ranging from 74.32 to 742.18 ppm); the highest value is observed in the black nodules from the western weathering profile and the lowest one in the top of the clayey surface soil from the same profile. The lanthanide contents, except cerium, are highest in the saprolite and decrease along the profile. The light REE contents are very high compared to those of the heavy REE (LREE/HREE ranging from 3.21 to 44.37). The lanthanides normalized with respect to the parent rock reveal: (i) strong negative Ce anomalies with [Ce/Ce1] ranging from 0.006 to 0.680 in the saprolite zone; (ii) strong positive Ce anomalies with [Ce/Ce1] ranging from 1.23 to 23.96 from the top of the saprolite to the clayey surface horizon; (iii) positive Eu anomalies with [Eu/Eu1] ranging from 2.09 to 2.41 in all the weathered materials.Mass balance evaluation shows that, except cerium, lanthanides have been highly accumulated in the saprolite zone and moderately concentrated in the upper part of both profiles. Cerium has been highly accumulated in the nodules of the West Mada profile. The presence of negative Ce anomalies is confirmed by its low degree of accumulation whereas the positive ones are related to its high degree of accumulation.  相似文献   

3.
The behaviour of major and trace elements have been studied along two serpentinite weathering profiles located in the Kongo-Nkamouna and Mang North sites of the Lomié ultramafic complex.The serpentinites are characterized by high SiO2 and MgO contents, very low trace, rare earth and platinum-group element contents. Lanthanide and PGE contents are higher in the Nkamouna sample than in Mang North. Normalized REE patterns according to the CI chondrites reveal that: (i) all REE are below chondrites abundances in the Mang North sample; (ii) the (La/Yb)N ratio value is higher in the Nkamouna sample (23.72) than in the Mang one (1.78), this confirms the slightly more weathered nature of the Nkamouna sample. Normalized PGE patterns according to the same CI chondrites reveal a negative Pt anomaly in the Mang sample. The Nkamouna sample is characterized by a flat normalized PGE pattern.All element contents increase highly from the parent rock to the coarse saprolite.In the weathering profiles, Fe2O3 contents decrease from the bottom to the top contrarily to Al2O3, SiO2 and TiO2. The contents of alkali and alkaline oxides are under detection limit.Concerning trace elements, Cr, Ni, Co, Cu, Zn and Sc decrease considerably from the bottom to the top while Zr, Th, U, Be, Sb, Sn, W, Ta, Sr, Rb, Hf, Y, Li, Ga, Nb and Pb increase towards the clayey surface soil. Chromium, Ni and Co contents are high in the weathered materials in particular in the saprolite zone and in the nodules.REE contents are high in the weathered materials, particularly in Nkamouna. Their concentrations decrease along both profiles. Light REE are more abundant than heavy REE. Normalized REE patterns according to the parent rock reveal positive Ce anomalies in all the weathered materials and negative Eu anomalies only at the bottom of the coarse saprolite (Nkamouna site). Positive Ce anomalies are higher in the nodular horizon of both profiles. An additional calculation method of lanthanide anomalies, using NASC data, confirms positive Ce anomalies ([Ce/Ce*]NASC = 1.15 to 60.68) in several weathered materials except in nodules ([Ce/Ce*]NASC = 0.76) of the upper nodular horizon (Nkamouna profile). The (La/Yb)N ratios values are lower in the Nkamouna profile than in Mang site.PGE are more abundant in the weathered materials than in the parent rock. The highest contents are obtained in the coarse saprolite and in the nodules. The elements with high contents along both profiles are Pt (63–70 ppb), Ru (49–52 ppb) and Ir (41 ppb). Normalized PGE patterns show positive Pt anomalies and negative Ru anomalies.The mass balance evaluation, using thorium as immobile element, reveals that:
– major elements have been depleted along the weathering profile, except for Fe, Mn and Ti that have been enriched even only in the coarse saprolite;
– all the trace elements have been depleted along both profiles, except for Cr, Co, Zn, Sc, Cu, Ba, Y, Ga, U and Nb that have been enriched in the coarse saprolite;
– rare earth elements have been abundantly accumulated in the coarse saprolite, before their depletion towards the top of the profiles;
– platinum-group elements have been abundantly accumulated in the coarse saprolite but have been depleted towards the clayey surface soil.
Moreover, from a pedogenetical point of view, this study shows that the weathering profiles are autochtonous, except in the upper part of the soils where some allochtonous materials are revealed by the presence of zircon grains.  相似文献   

4.
摘要:运用岩石地球化学方法,对广东惠东地区离子吸附型稀土矿床的地球化学特征进行研究。结果显示,风化壳中元素含量及配分特点总体上取决于母岩,但稀土元素在继承母岩稀土元素的基础上含量进一步富集,且各风化层中元素含量变化与风化作用之间具有一定相关性。WIG指数相较于CIA指数能更有效地描述风化壳风化强度,风化壳中稀土元素迁出富集与WIG指数及元素迁移系数具有一定规律性,轻稀土元素多在全风化层上部富集,而重稀土元素在全风化层下部及半风化层明显迁入富集,Ce、Eu均具明显负异常。  相似文献   

5.
The behaviour of the rare-earth elements(REE)during the weathering of granites was studied in southern Guangxi,China.Based on the study of the weathering profiles,the soil,weathered and sub-weatereb zones are identified with different REE geochemical behaviours throug the weathering profiles of granite.The Ce anomalies of the weathering profiles cover a large range of values with most falling between 1.02 and 1.43in the soil zone and 0.16and 0.40in the weathered and sub-weathered zones.Light rare-earth elements(LREE) and heavy rare-earth elements(HREE)are enriched to varying degree in the weathering profiles as compared to host granites.In the soil zone,more HREEs are leached than LREEs,and HREEs are more enriched than LREE in the weathered and sub-weathered zones.It is considered that infiltration and adsorption on clays are two processes controlling the enrichment and formation of REE deposits in the weathering profiles of granite.  相似文献   

6.
An in situ weathering profile overlying chlorite schists in the Mbalmayo-Bengbis formations (South Cameroon) was chosen for the study of the behaviour of REE and the evaluation of geochemical mass balance. After physical and mineralogical studies, the chlorite schists and the undisturbed weathered materials were chemically analyzed for major elements (X-ray fluorescence and titrimetry) and REE (ICP-MS). The behaviour of the REE in the Mbalmayo weathering system was established in comparison with the REE of the reference parent rock. Mass balance calculations were applied to both major elements and REE. The mineralogy of the materials was determined with the aid of a Philips 1720, diffractometer. The chlorite schists of the Mbalmayo sector show low REE contents (Σ=153.44 ppm). These rocks are relatively rich in LREE (about 125 times the chondritic value) and relatively poor in HREE (about 20 times the chondritic value). The REE diagram normalized to chondrites shows a slightly split graph ((La/Yb)N=6.18) with marked enrichment in LREE (LREE/HREE=9.50) in relation to HREE. Moreover, these spectra do not present any Ce anomaly, but a slightly positive Eu anomaly. The imperfectly evolved profile, whose materials are genetically linked, shows an atypical behaviour of REE. In effect, the LREE are more mobile than the HREE during weathering ((La/Yb)NASC<1) with weak Ce anomalies. This has been rarely reported in lateritic profiles characterized by higher HREE mobility than LREE during weathering processes with high Ce anomalies. This is either due to the difference in the stability of REE-bearing minerals, or to the weak acidic to basic pH conditions (6.70<pH<7.80), or even due to the average evolution of the weathering materials. The pathway of the REE along the profile is as follows: (1) leaching in the saprolites and summit of the profile, except for Ce, which precipitates very weakly in the nodular materials and the coarse saprolite materials, (2) at the base of the profile, solutions come in contact with chlorite schist formations, at this level, the pH increases (pH=7.79), HREE and a part of LREE partially void of Ce precipitate and (3) the other part of LREE precipitates further up in the profile. The geochemical mass balance calculations reveal that these elements are leached in the same phases as the relatively high Si, Al, K and Fe2+ contents.  相似文献   

7.
赵芝  王登红  潘华  屈文俊 《地球科学》2017,42(10):1697-1706
为了解风化壳中离子交换相稀土元素的特征,对广西某地花岗岩风化壳剖面样品进行了X射线衍射及主量、稀土元素地球化学特征的研究.剖面自上而下可划分为腐殖土层(A1)、亚粘土层(A2)、网纹状风化层(B1)和全风化层(B2);自A1至B2,粘土矿物的含量和化学风化蚀变指数快速降低;与母岩相比A1、A2、B1中全相Ce、Nd和HREE相对富集,B2中全相稀土与母岩特征相似,所有样品的离子交换相HREE亏损,Y相对富集;离子交换相轻、重稀土一起富集在B2中.据此推测,花岗岩中褐帘石、榍石等易风化的稀土矿物为离子交换相稀土提供了主要的物源,锆石、磷钇矿等难风化的稀土矿物的残留及表生稀土矿物的形成使全相HREE相对富集;离子交换相轻、重稀土元素的分馏程度随风化程度的增加而变化.   相似文献   

8.
碳酸盐岩风化形成的红土保存着喀斯特发展演化历史证据,同时也是喀斯特地区土壤研究的重要对象。文章选取云 南石林地区的两处典型碳酸盐岩剖面为研究对象,对主量元素,微量元素及稀土元素在风化层的迁移特征及分布规律进行 研究,为探究风化层的成因提供依据。结果显示:(1) 以Ti为参比元素的剖面迁移特征表明,两剖面的主量元素在成土过 程中有相似的迁移规律,多数表现为淋失;微量元素略有差异,富集淋失程度不一。(2) UCC 标准化蜘蛛图显示,相对于 基岩,风化层中的Ca和Sr均出现亏损;与UCC相比,Fe、Ti等元素轻微富集,Mg、Ca、Na、K、P等元素显示了强烈的亏 损特征。(3) 基岩与风化层的REE分布模式相似,但风化层的稀土相对富集,轻稀土元素间的分异较大而重稀土元素间的 分异较小,且SJC剖面的轻、重稀土元素比值大于QST剖面;稀土元素球粒陨石标准化后,SJC剖面的Eu为负异常,剖面 上部和下部出现Ce负异常;QST剖面Ce负异常,Eu明显负异常。(4) 元素含量变化和元素对Al-Ti、Al-Fe及Zr-Hf相关性 说明剖面上覆红土是下伏基岩风化的结果。研究结果显示,两个剖面的元素地球化学特征与基岩存在很好的继承性,风化 层是基岩原位风化的产物。  相似文献   

9.
本文以赣南小流域水体为研究对象,利用VG Axiom高分辨多接受双聚焦等离子体质谱仪测定了水体中溶解态稀土元素(DREE)的含量,分析了水体中DREE的分布分异机制,并探讨了稀土元素(REE)产生分异的原因.结果表明,赣南所有的采样区水体中Ce都表现为负异常,说明其在风化壳中少活化.受自然风化作用控制为主的水体相对于页岩除Ce亏损、Eu富集外产生的分异很小,其中Eu的正异常源于Eu富集矿物的优先溶解;蒸发盐矿影响下的水体相对于自然作用为主的水体DREE没有发生明显分异;受稀土矿影响的水体中重稀土元素(HREE)富集、Eu负异常的分布模式继承了稀土矿区风化壳的特征;赣州市下游干流水体中中稀土元素(MREE)富集、Eu负异常的分布模式主要是人为影响的结果.  相似文献   

10.
近年来,临沧花岗岩体风化壳内离子吸附型稀土(IREE)矿床的找矿勘查取得重要进展,岔河IREE矿床是该区新发现的中大型矿床之一,为IREE矿床成矿预测提供了研究实例.文章对岔河IREE矿床11个探矿工程风化剖面样品和1370件土壤地球化学样品的稀土元素,以及Ce异常分布、迁移及富集等表生地球化学特征和规律进行研究,结合前人研究成果总结出该区找矿模型,实施工程验证并取得了找矿发现.研究表明,风化花岗岩稀土元素配分模式与母岩相似,风化过程中REE发生淋滤、富集作用(全风化层富集程度最高),LREE和HREE发生了分异作用(LREE分异程度相对较高).在风化过程中,Ce异常与稀土元素氧化物总量(ΣREO)呈负相关,且Ce异常存在明显的分异作用,如风化剖面中黏土层Ce正异常(1.69)与全风化层上部Ce负异常(0.75)数值具有明显差异,为Ce异常用于IREE矿床成矿预测成为可能(见矿率达90%).该研究不仅能定位、定量的圈定IREE矿床成矿预测区,而且完善了IREE矿床找矿模型,具有重要的推广和应用价值.  相似文献   

11.
Experimental data show that the Ce-family REE are more accessible to hydrolysis than the Y-family REE, and the optimum pH conditions for REE adsorption vary from one system to another, for example, pH = 3–6 for the chloride system, and 3–4 for the acutate system. At pH = 3–6, no obvious selective REE adsorption is observed in both the systems. From the deep levels of the weathered crust towards the surface the percent content of the Ce-family REE tends to increase progressively, whereas that of the Y-family REE tends to decrease, with La/Ce varying from <1 → > 1 → <1. More or less fractionation would take place among the rare-earth elements due to their different geochemical behaviors. Nevertheless, the REE distribution patterns in the weathered crust can still reflect the REE distribution patterns in the parent rocks. Relatively unstable independent REE minerals, such as bastinaesite, parisite and britholite are considered as the main source of rare-earth elements in the weathered crust of this area.  相似文献   

12.
通过对秭归地区闪长岩岩体风化壳中微量元素的分布规律研究,将该风化剖面中的微量元素划分为3类。第一类包括Sc、V、Cr、Co、Ni、Cu、Zn、Zr、Hf、Nb、Ta、U、Th、Mo、W,基本属于非活动性元素,在风化过程中得以有效保留,其中U、Cr、Cu等受氧化还原条件的影响,有时呈局部富集现象,规律性不明显。第二类以Ca、Rb、Cs、Sr、Ba、Pb、Ga、Gd、Tl为代表,随着风化作用的进行而逐步从风化壳中淋失,属活动性元素。第三类以稀土元素为代表,在风化壳内部发生局部的再分配,从剖面上层随风化溶液向下淋滤亏损,到剖面中下部沉淀富集,其中重稀土元素的淋失程度大于轻稀土元素。由于母岩中斜长石的风化淋滤,Eu在氧化环境下逐渐从正异常变为负异常。Ce在地表氧化条件下很容易生成四价氧化物(方铈石),并在表层明显富集,剖面介质中氧化还原条件的变化导致Ce的波动变化。  相似文献   

13.
详细报道了冀东、五台和吕梁地区条带状铁矿全岩样品的稀土元素分析结果。结果表明,研究区BIF具有非常相似的特征:稀土总量均较低;经页岩标准化的稀土元素配分模式均呈现轻稀土亏损、重稀土富集的特征;Y/Ho比值较高;具有明显的Eu、Y、La的正异常,且这些特征表明研究区BIF的稀土元素来源于火山热液和海水的混合溶液。虽然BIF均显示Eu正异常,但不同类型、不同沉积年龄BIF的铕异常程度不同:与吕梁地区Superior型铁矿相比,冀东和五台地区的Algoma型铁矿显示了更大的Eu正异常;并且自中太古代-新太古代-古元古代,BIF的铕正异常逐渐减小,这可能反映了随着BIF沉积年龄的减小,进入到该地区海水中的高温热液流体逐渐减少;同时,研究区BIF缺乏明显的Ce负异常,可能暗示在BIF沉积时海水的氧化还原状态为缺氧环境。  相似文献   

14.
Geochemical and geochronological studies were conducted on basalts and laterites from the Bolaven Plateau in southern Laos in order to evaluate the mobility and mineralization of REE, Y and Sc during laterization. The basalts are classified into three categories: (i) small volumetric alkali basalt (eruption age: 15.7 Ma), large volumetric olivine tholeiite (1.2 Ma) and quartz tholeiite with olivine tholeiite (younger than 0.5 ± 0.2 Ma). Formation of REE minerals during laterization result in mobilization and fractionation of REE and Y in laterite profiles. Occurrence of florencite‐(Ce) in a laterite profile derived from alkali basalt immobilizes REE (particularly LREE) and this leads the laterites to be enriched in LREE relative to the parent basalt. Few positive Ce anomalies in this profile suggest that florencite‐(Ce) [(Ce)Al3(PO4)2(OH)2] formation was followed by CeO2 precipitation due to the change of redox condition. In tholeiite‐derived laterite profiles, florencite is not recognized and REE and Y tend to be depleted relative to the parent basalts with positive Ce anomalies. This is interpreted as scavenging REE3+ except for Ce4+ from the laterite profile in oxidizing conditions. Sc behaves similarly to Fe during laterization and it is more abundant in the tholeiitic laterite than that in the alkali basaltic laterite. Results of sequential extraction indicate that REE of the alkali basaltic laterite are contained in residual phase, which is dominantly florencite‐(Ce), but they are rarely present in ion‐adsorption phase. It is concluded that basaltic laterites have a low potential of REE resource in terms of low REE contents and a difficulty in REE extraction.  相似文献   

15.
In a lateritic bauxite formed by weathering of nepheline syenite at Passa Quatro, Minas Gerais State, Brazil, bauxites on the hill-tops directly develop from the syenite bed-rock, while downslope, a kaolinitic layer occurs between bauxite and synetie. A petrological investigation was performed on undisturbed weathered rock samples collected from a representative upslope pit. The undisturbed weathered rocks were chemically analysed for major trace elements including REE and Zr. Mass balance calculations were applied, and the behaviour of the REE in the Passa Quatro weathering system was established compared to REE reference chondrite and to REE reference parent rock. In the lateritic bauxite, the results suggest that the first stages of weathering induce a volumetric change of 50%, i.e. collapse, with respect to the parent rock, and remove REE with a slightly larger loss of the LREE, except Ce, compared to the HREE. In the upper layers, where bauxite is more mature, a net mass gain in REE is observed relative to the underlying layers. This gain takes place during the reduction of the upper layer during the downward progression of the weathering front. Very significant REE losses occurs during the bauxitization processes throughout the upslope profile. In addition, the downslope kaolinitic system is demonstrated to be depleted in REE in the same proportions as the upslope bauxite. We proposed that the REE exported in solution from the whole weathering mantle have enriched neighbouring watershed sediments.  相似文献   

16.
Shallow groundwater and hot springs were collected from northeastern Guangdong Province, Southeast China, to determine the concentrations and fractionation patterns of rare-earth elements(REE). The results show that the La, Ce and Nd of REEs are abundant in groundwater and rock samples, and the ∑REE contents in groundwater and rock samples range from 126.5 to 2875.3 ng/L, and 79.44 to 385.85 mg/L, respectively. The shallow groundwater has slightly HREE-enriched PAAS-normalized patterns. However, the granitic rocks PAAS-normalized patterns, with remarkable negative Eu anomalies, are different from that of shallow groundwater. The enrichment of HREE is considered to be controlled by REE complexation and readsorption for most groundwater has Ce and Eu positive anomalies. The Ce and Eu anomalies in groundwater are controlled by redox conditions. Moreover, the Fe-contain sediments dissolution and/or the reduction of Fe oxyhydroxides are another factor contributing to Ce anomalies. The Eu anomalies in groundwater are controlled by the preferential mobilization of Eu2+ during water-rock interaction compared to Eu3+.  相似文献   

17.
In this study, the mobilization, redistribution, and fractionation of trace and rare earth elements (REE) during chemical weathering in mid-ridge (A), near mountaintop (B), and valley (C) profiles (weak, weak to moderate, and moderate to intense chemical weathering stage, respectively), are characterized. Among the trace elements, U and V were depleted in the regolith in all three profiles, Sr, Nb, Ta, Zr, and Hf displayed slight gains or losses, and Th, Rb, Cs, and Sc remained immobile. Mn, Ba, Zn, Cu, and Cr were enriched at the regolith in profiles A and B, but depleted in profile C. Mn, Pb, and Co were also depleted in the saprock and fractured shale zones in profiles A and B and enriched in profile C. REEs were enriched in the regolith and depleted at the saprock zone in profiles A and B and depleted along profile C. Mobility of trace and REEs increased with increasing weathering intensity. Normalized REE patterns based on the parent shale revealed light REE (LREE) enrichment, middle REE (MREE), and heavy REE (HREE) depletion patterns. LREEs were less mobile compared with MREEs and HREEs, and this differentiation increased with increasing weathering degree. Positive Ce anomalies were higher in profile C than in profiles A and B. The Ce fractionated from other REE showed that Ce changed from trivalent to tetravalent (as CeO2) under oxidizing conditions. Minimal REE fractionation was observed in the saprock zone in profiles A and B. In contrast, more intense weathering in profile C resulted in preferential retention of LREE (especially Ce), leading to considerable LREE/MREE and LREE/HREE fractionation. (La/Yb)N and (La/Sm)N ratios displayed maximum values in the saprock zone within low pH values. Findings demonstrate that acidic solutions can mobilize REEs and result in leaching of REEs out of the highly acidic portions of the saprock material and transport downward into fractured shale. The overall behavior of elements in the three profiles suggests that solution pH, as well as the presence of primary and secondary minerals, play important roles in the mobilization and redistribution of trace elements and REEs during black shale chemical weathering.  相似文献   

18.
The effects of terrestrial weathering on REE mobilization are evaluated for a variety of uncommon meteorites found in Antarctica and in hot deserts. The meteorites analyzed include 7 non-cumulate eucrites, 10 shergottites, 3 nakhlites, 2 lunar meteorites, 4 angrites, 10 acapulcoites, 1 winonaite, and 1 brachinite. In-situ concentration measurements of lanthanides and selected other minor and trace elements were made on individual grains by secondary ion mass spectrometry (SIMS). In Antarctic meteorites, oxidation converts Ce3+ to Ce4+, which is less soluble than the trivalent REE, resulting in Ce anomalies. The mineral most affected is low-Ca pyroxene. However, not all grains of a given mineral are, and distinct analyses of a single grain can even yield REE patterns with and without Ce anomalies. The effect is most pronounced for Antarctic eucrites in which Ce anomalies are observed not only in individual minerals but also in whole rock samples. Although Ce anomalies are observed in meteorites from hot deserts as well, the most characteristic signs of chemical alteration in this environment are a LREE enrichment with a typical crustal signature, as well as Sr, Ba and U contaminations. These can modify the whole rock REE patterns and disturb the isotope systematics used to date these objects. The LREE contamination is highly heterogeneous, affecting some grains and not others of a given mineral (mainly olivine and low-Ca pyroxene, the two minerals with the lowest REE concentrations). The major conduit for REE movement is through shock-induced cracks and defects, and the highest levels of contamination are found in altered material filling such veins and cracks. Meteorites that experienced low shock levels and those that are highly recrystallized are the least altered.  相似文献   

19.
稀土的开发和广泛应用使得人们倍加关注其在环境中的分布及其环境地球化学行为。赣江作为鄱阳湖流域五大入湖河之一,发源于稀土资源富集的赣南地区,而其下游水体及周边地下水中稀土元素的含量和分异特征目前尚不完全清楚。以赣江北支水体及沉积物为研究对象,开展了稀土元素地球化学研究。结果表明,赣江北支水体中稀土元素总量在地表水中为230~1 146 ng/L(均值458.85 ng/L),地下水中为284~1 498 ng/L(均值634.94 ng/L),沉积物中稀土元素总量为177.9~270.7 mg/kg(均值226.99 mg/kg)。PHREEQC模拟计算表明,水体中的稀土元素主要以碳酸根络合物(REEC03+)的形式存在。地表水和地下水总体上均表现为重稀土元素相较于轻、中稀土元素富集,沉积物未表现出明显的富集特性;水体具有Ce、Eu负异常特点,而沉积物表现为Ce正异常和Eu负异常,指示氧化还原环境和水岩相互作用对稀土元素在水-沉积物系统中迁移转化的影响。地下水中稀土元素的含量沿流向具有上升趋势,而水体中重稀土元素的富集程度不断减弱,同时碳酸根络合物(REEC03+)的占比不断降低,反映水体中稀土元素的含量受到pH、胶体吸附、络合作用以及地下水-地表水相互作用的影响。水体中重稀土元素的富集受到碳酸根络合反应的影响,Ce、Eu负异常与Ce氧化沉淀和母岩特性相关。Gd异常值表明,研究区中下游水体中的Gd元素受到人为输入的影响。  相似文献   

20.
The total rare-earth element values(ΣREE)of loess in the Xinjiang region vary over a range of 128-200 ppm ,with an average of 153ppm .The average REE content of loess lies between the earth‘s crust (155ppm) and sedimentary rocks(151ppm).The Xinjiang loess,with the REE distribu-tion patterns characterized by negative slopes ,is rich in the Ce-family elements, and has a distribu-tion pattern characteristic of sedimentary rocks.The North Xinjiang loess is relatively depleted in Tb,but rich in Yb and Lu.The South Xinjiang loess is relatively rich in light rare-earth elements.This is full proof that the Xinjiang loess comes partly from weathered materials(clay rock,sandstone)in the region studied.The REE distribution patterns in the Xinjiang loess are similar to those in the precipitated dust and Aeolian sand,indicating the same material source.The REE distribution pat-terns in the Xinjiang loess are also similar to those in loess from the middle Yellow River Valley,China and Taskent,the former USSR.This implies that loesses of the three locations(Xinjiang,the mid-dle Yellow River Valley and Taskent) come from a common material source.But the REE patterns in the Xinjiang loess are different from those in wall rocks (volcanic rock,K-bearing volcanic rock).Generally ,LREE/HREE,Eu/Eu* and Ce/Ce* ratios reflect the features of parent materials of loess,indicating that the parent rocks were probably in the early stage of alkaline weathering and the weathered materials existed in an oxidation environment with basic mediums under arid-climatic conditions before transport.As a result,the migration ability of the REE is weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号