首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
Strong negative cerium anomalies are developed in the saprolite zone of two serpentinite lateritic profiles in the Mada region of the Kongo–Nkamouma massif in the Lomié ultramafic complex (South-East Cameroon).The total lanthanide contents increase strongly from the parent rock (1.328 ppm) to the weathered materials (ranging from 74.32 to 742.18 ppm); the highest value is observed in the black nodules from the western weathering profile and the lowest one in the top of the clayey surface soil from the same profile. The lanthanide contents, except cerium, are highest in the saprolite and decrease along the profile. The light REE contents are very high compared to those of the heavy REE (LREE/HREE ranging from 3.21 to 44.37). The lanthanides normalized with respect to the parent rock reveal: (i) strong negative Ce anomalies with [Ce/Ce1] ranging from 0.006 to 0.680 in the saprolite zone; (ii) strong positive Ce anomalies with [Ce/Ce1] ranging from 1.23 to 23.96 from the top of the saprolite to the clayey surface horizon; (iii) positive Eu anomalies with [Eu/Eu1] ranging from 2.09 to 2.41 in all the weathered materials.Mass balance evaluation shows that, except cerium, lanthanides have been highly accumulated in the saprolite zone and moderately concentrated in the upper part of both profiles. Cerium has been highly accumulated in the nodules of the West Mada profile. The presence of negative Ce anomalies is confirmed by its low degree of accumulation whereas the positive ones are related to its high degree of accumulation.  相似文献   

2.
The behaviour of PGE in a rainforest ecosystem were investigated in four lateritic profiles (Nkamouna, Napene, West and East Mada) developed on serpentinites in the Kongo–Nkamouna massif (Lomié region, South-East Cameroon). In serpentinites, the total PGE content attains 22 ppb whilst it ranges between 26 and 200 ppb in the weathering blanket. Amongst the analyzed elements (platinum, iridium, ruthenium, rhodium, palladium), platinum and ruthenium contents are high in the saprolite zone and in the hardened materials of some weathering profiles (40–66 ppb for platinum, 50–71 ppb for ruthenium). Apart from the hardened materials, the total PGE content decreases from the coarse saprolite towards the clayey surface soil. The Fe2O3-PGE diagram indicates a relatively similar behaviour in these iron-rich samples. The Pt–Ir, Pt–Pd, Pt–Ru, Pt–Rh diagrams portray positive correlations between platinum and other PGE. This fact is supported by the positive correlation noticed between IPGE and PPGE. The Pt/Ir, Pt/Pd, Pt/Ru and Pt/Rh values indicate that iridium, palladium, ruthenium and rhodium are more mobile than platinum. These data confirm the mobility of PGE in laterites and the positive correlation reveals that PGE might be accommodated in the interfaces of iron oxides. The mass balance assessment shows that PGE are strongly leached from the Kongo–Nkamouna weathering blanket except in the coarse saprolite of the Nkamouna profile.  相似文献   

3.
An in situ weathering profile overlying chlorite schists in the Mbalmayo-Bengbis formations (South Cameroon) was chosen for the study of the behaviour of REE and the evaluation of geochemical mass balance. After physical and mineralogical studies, the chlorite schists and the undisturbed weathered materials were chemically analyzed for major elements (X-ray fluorescence and titrimetry) and REE (ICP-MS). The behaviour of the REE in the Mbalmayo weathering system was established in comparison with the REE of the reference parent rock. Mass balance calculations were applied to both major elements and REE. The mineralogy of the materials was determined with the aid of a Philips 1720, diffractometer. The chlorite schists of the Mbalmayo sector show low REE contents (Σ=153.44 ppm). These rocks are relatively rich in LREE (about 125 times the chondritic value) and relatively poor in HREE (about 20 times the chondritic value). The REE diagram normalized to chondrites shows a slightly split graph ((La/Yb)N=6.18) with marked enrichment in LREE (LREE/HREE=9.50) in relation to HREE. Moreover, these spectra do not present any Ce anomaly, but a slightly positive Eu anomaly. The imperfectly evolved profile, whose materials are genetically linked, shows an atypical behaviour of REE. In effect, the LREE are more mobile than the HREE during weathering ((La/Yb)NASC<1) with weak Ce anomalies. This has been rarely reported in lateritic profiles characterized by higher HREE mobility than LREE during weathering processes with high Ce anomalies. This is either due to the difference in the stability of REE-bearing minerals, or to the weak acidic to basic pH conditions (6.70<pH<7.80), or even due to the average evolution of the weathering materials. The pathway of the REE along the profile is as follows: (1) leaching in the saprolites and summit of the profile, except for Ce, which precipitates very weakly in the nodular materials and the coarse saprolite materials, (2) at the base of the profile, solutions come in contact with chlorite schist formations, at this level, the pH increases (pH=7.79), HREE and a part of LREE partially void of Ce precipitate and (3) the other part of LREE precipitates further up in the profile. The geochemical mass balance calculations reveal that these elements are leached in the same phases as the relatively high Si, Al, K and Fe2+ contents.  相似文献   

4.
The Matomb region constitutes an important deposit of detrital rutile. The rutile grains are essentially coarse (> 3 mm), tabular and elongated, due to the short sorting of highly weathered detritus. This study reports the major, trace, and rare-earth element distribution in the bulk and rutile concentrated fractions. The bulk sediments contain minor TiO2 concentrations (1–2 wt%), high SiO2 contents (∼77–95 wt%) and variable contents in Al2O3, Fe2O3, Zr, Y, Ba, Nb, Cr, V, and Zn. The total REE content is low to moderate (86–372 ppm) marked by high LREE-enrichment (LREE/HREE ∼5–25.72) and negative Eu anomalies (Eu/Eu* ∼0.51–0.69). The chemical index of alteration (CIA) shows that the source rocks are highly weathered, characteristic of humid tropical zone with the development of ferrallitic soils. In the concentrated fractions, TiO2 abundances exceed 94 wt%. Trace elements with high contents include V, Nb, Cr, Sn, and W. These data associated with several binary diagrams show that rutile is the main carrier of Ti, V, Nb, Cr, Sn, and W in the alluvia. The REE content is very low (1–9 ppm) in spite of the LREE-abundance (LREE/HREE ∼4–40). The rutile concentrated fractions exhibit anomalies in Ce (Ce/Ce* ∼0.58 to 0.83; ∼1.41–2.50) and Eu (Eu/Eu* ∼0.42; 1.20–1.64). The high (La/Sm)N, (La/Yb)N and (Gd/Yb)N ratios indicate high REE fractionation.  相似文献   

5.
碳酸盐岩风化形成的红土保存着喀斯特发展演化历史证据,同时也是喀斯特地区土壤研究的重要对象。文章选取云 南石林地区的两处典型碳酸盐岩剖面为研究对象,对主量元素,微量元素及稀土元素在风化层的迁移特征及分布规律进行 研究,为探究风化层的成因提供依据。结果显示:(1) 以Ti为参比元素的剖面迁移特征表明,两剖面的主量元素在成土过 程中有相似的迁移规律,多数表现为淋失;微量元素略有差异,富集淋失程度不一。(2) UCC 标准化蜘蛛图显示,相对于 基岩,风化层中的Ca和Sr均出现亏损;与UCC相比,Fe、Ti等元素轻微富集,Mg、Ca、Na、K、P等元素显示了强烈的亏 损特征。(3) 基岩与风化层的REE分布模式相似,但风化层的稀土相对富集,轻稀土元素间的分异较大而重稀土元素间的 分异较小,且SJC剖面的轻、重稀土元素比值大于QST剖面;稀土元素球粒陨石标准化后,SJC剖面的Eu为负异常,剖面 上部和下部出现Ce负异常;QST剖面Ce负异常,Eu明显负异常。(4) 元素含量变化和元素对Al-Ti、Al-Fe及Zr-Hf相关性 说明剖面上覆红土是下伏基岩风化的结果。研究结果显示,两个剖面的元素地球化学特征与基岩存在很好的继承性,风化 层是基岩原位风化的产物。  相似文献   

6.
Peridotite and granite xenoliths, in the early stage of weathering, occur in the Nyos volcanic region (NW Cameroon). Geochemical data shows that peridotites are marked by high concentrations of MgO (42.30 wt.%, with SiO2/MgO ∼ 1), chromium (2100 ppm), nickel (2100 ppm) and cobalt (104 ppm), as well as by low lanthanide contents (ΣREE: 7.41 ppm). Granites display SiO2 contents (70–73 wt.%), and are mostly peraluminous (1.40 > A/CNK < 1.6). They are also characterized by low contents in chromium (<24 ppm), nickel (ranging from 6 to 15 ppm) and cobalt (ranging from 3 to 6 ppm). Granites possess high lanthanide contents (ΣREE varying between 248.00 and 463.00 ppm), particularly in light lanthanides (LREE/HREE ratios ranging from 21 to 32). The chondrite-normalized patterns of the studied xenoliths are characterized by: (i) LREE enrichments in both rock types; (ii) negative Eu anomalies ([Eu/Eu*] ranging from 0.45 to 0.64) and weak positive Ce anomalies ([Ce/Ce*] ranging from 1.06 to 1.46) in granites. The weathering process provokes a remobilization of several trace elements notably light lanthanides.The geochemical survey of Platinum-Group Elements (PGE) done in these rocks in the early stage of weathering shows that PGE contents are less than 7 ppb in the peridotites. The highly concentrated elements are ruthenium (6.26 ppb) and platinum (5.53 ppb). The total PGE content is 14.57 ppb. These concentrations normalized with respect to chondrites display a flat spectrum from iridium to platinum. PGE contents in the granites are below detection limit except for two samples (LNY01 and LNY02) whose platinum content is close to 0.23 ppb.  相似文献   

7.
In this study, the mobilization, redistribution, and fractionation of trace and rare earth elements (REE) during chemical weathering in mid-ridge (A), near mountaintop (B), and valley (C) profiles (weak, weak to moderate, and moderate to intense chemical weathering stage, respectively), are characterized. Among the trace elements, U and V were depleted in the regolith in all three profiles, Sr, Nb, Ta, Zr, and Hf displayed slight gains or losses, and Th, Rb, Cs, and Sc remained immobile. Mn, Ba, Zn, Cu, and Cr were enriched at the regolith in profiles A and B, but depleted in profile C. Mn, Pb, and Co were also depleted in the saprock and fractured shale zones in profiles A and B and enriched in profile C. REEs were enriched in the regolith and depleted at the saprock zone in profiles A and B and depleted along profile C. Mobility of trace and REEs increased with increasing weathering intensity. Normalized REE patterns based on the parent shale revealed light REE (LREE) enrichment, middle REE (MREE), and heavy REE (HREE) depletion patterns. LREEs were less mobile compared with MREEs and HREEs, and this differentiation increased with increasing weathering degree. Positive Ce anomalies were higher in profile C than in profiles A and B. The Ce fractionated from other REE showed that Ce changed from trivalent to tetravalent (as CeO2) under oxidizing conditions. Minimal REE fractionation was observed in the saprock zone in profiles A and B. In contrast, more intense weathering in profile C resulted in preferential retention of LREE (especially Ce), leading to considerable LREE/MREE and LREE/HREE fractionation. (La/Yb)N and (La/Sm)N ratios displayed maximum values in the saprock zone within low pH values. Findings demonstrate that acidic solutions can mobilize REEs and result in leaching of REEs out of the highly acidic portions of the saprock material and transport downward into fractured shale. The overall behavior of elements in the three profiles suggests that solution pH, as well as the presence of primary and secondary minerals, play important roles in the mobilization and redistribution of trace elements and REEs during black shale chemical weathering.  相似文献   

8.
REE fractionation and Ce anomalies in weathered Karoo dolerite   总被引:1,自引:0,他引:1  
Analyses of samples from a weathering profile on Karoo dolerite allow elements to be divided into three groups depending on their behaviour. Si, K, Na, Mg, Ca, Sr, Ba and V are mobilized and removed from weathered products. Fe, Al. Ti, Zr, Hf, Zn, Cu, Sc, Co and Ni are immobile. REE, Y, and to a lesser extent Cr, are mobile and redistributed within the profile without a net loss of these elements from the profile. Large positive Ce anomalies are developed in oxidized weathered products by preferential leaching of the other REE's. Negative Ce anomalies and REE enrichment is a feature of less altered dolerite.  相似文献   

9.
摘要:运用岩石地球化学方法,对广东惠东地区离子吸附型稀土矿床的地球化学特征进行研究。结果显示,风化壳中元素含量及配分特点总体上取决于母岩,但稀土元素在继承母岩稀土元素的基础上含量进一步富集,且各风化层中元素含量变化与风化作用之间具有一定相关性。WIG指数相较于CIA指数能更有效地描述风化壳风化强度,风化壳中稀土元素迁出富集与WIG指数及元素迁移系数具有一定规律性,轻稀土元素多在全风化层上部富集,而重稀土元素在全风化层下部及半风化层明显迁入富集,Ce、Eu均具明显负异常。  相似文献   

10.
The authors determine the concentrations of dissolved (<0.22 μm) rare earth elements (REE) and suspended particulate matter (SPM) of typical karst rivers in Guizhou Province, China during the high-flow period. The concentrations of acid-soluble REE extracted from SPM using diluted hydrochloric acid are also obtained to investigate water/particle interaction in the river water. The dissolved REE contents in the river water are extremely low in the rivers of the study. The dissolved REE distribution patterns normalized by the Post Archean Australia Shale (PAAS) in the karst rivers are not flat, show slight enrichment of heavy REE to light REE, and also have significant negative Ce and Eu anomalies. The acid-soluble REE appears to have similar distribution patterns as characterized by MREE enrichment and slight LREE depletion, with unremarkable Ce and Eu anomalies. The PAAS-normalized REE distribution patterns of SPM are flat with negative Eu anomalies. The contents and distribution patterns of REE in the SPM are closely related to the lithological character of the source rocks. The SPM contains almost all the REE produced in the process of surficial weathering. This demonstrates that particle-hosted REE are the most important form of REE occurrence. REE fractionation, which takes place during weathering and transport, leads to an obvious HREE enrichment in the dissolved loads relative to the SPM. Y/Ho ratio can be used to shed light on REE behaviors during water/particle interaction.  相似文献   

11.
Mineralization with exchangeable rare earth element (REE) and yttrium (MEX-REY) has been recognized in the weathering profiles in South China since the early 1970's. This type of REY mineralization occurs in weathering profiles of parent rocks ranging in composition from granite to acidic volcanic rocks and lamprophyre. The majority of the known resources occurring in the weathering profiles of granitic rocks. Total resources of this type of REY amount to millions tons of rare earth oxides, and therefore represent one of the most important types of rare earth resources in China, particularly for heavy rare earth elements (HREE) and yttrium.Accumulation of REY in the weathering profiles of granitic rocks is strongly controlled by the resistance to weathering of the principal REY-bearing accessory minerals in the parent rocks; only a limited proportion of total REY (< 30%) is incorporated in the rock-forming minerals. MEX-REY more commonly occur in weathering profiles developed on granitic rocks within which most of the REY are incorporated in accessory minerals weakly resistant to weathering (doverite, parisite, etc.). For the well-developed weathering profiles, three horizons can be distinguished from surface downwards: the lateritic horizon (A), the weathered horizon (B), and the weathering front (C). Continuous leaching, coupled with low rate of denudation, results in the accumulation of REY in the subsurface horizons (the B and C horizons), and thus results in REE differentiation within the well-developed, layered, and mature weathering profiles. Exchangeable REY, which can be replaced by cations like NH4+ and Na+ etc. in electrolyte solutions and can be removed by complexing agents such as EDTA, are commonly the major form of REE occurrence in the B horizon. Cerium is enriched in the top layer (A horizon) and depleted in the subsurface horizons of the weathering profiles, most likely due to the oxidation of Ce(III) to Ce(IV) followed by cerianite formation or absorption onto clays and/or Fe and Al oxyhydroxides.  相似文献   

12.
Fifty-seven shallow groundwater samples were collected from Guiyang karst basin, China, to analyze the aqueous rare-earth elements in low-water seasons and it is shown that the total amount of rare-earth elements (ΣREE) in karst groundwater is exceedingly low compared with that in carbonate rocks or weathering crusts of carbonate rocks, and ranges from 0.01 to 0.43, from 0.03 to 0.27, from 0.03 to 0.19 and from 0.05 to 1.38 μg·L-1 for dolomite, dolomitic & limestone, limestone and clastic rock aquifer, respectively. Both distributions and contents of rare-earth elements (REE) in karst groundwater reflect the lithology of host rocks or weathering crusts of carbonate rocks through which groundwater flows. The chondrite-normalized patterns show a non-flat profile with higher enrichment of slightly light rare-earth elements (LREE) than heavy rare-earth elements (HREE), prominent fractionation between LREE and HREE, negative Ce anomalies and negative or positive Eu anomalies. There is more obvious fractionation between LREE and HREE in groundwater than that in carbonate rocks and their weathering crusts due to high contents of HCO3? and PH in groundwater. In shallow karst groundwater, REE(CO3)n2n-3 (n=1 and 2) is the main inorganic species of REE. But for a clastic rock aquifer, both REESO4+ and REECO3+ are the main inorganic species of REE. Species of REE in groundwater is closely associated with the hydrochemical type of groundwater which is predominated by the lithology of host rocks, groundwater-rock interaction and weathering-pedogenesis of carbonate rocks.  相似文献   

13.
近年来,临沧花岗岩体风化壳内离子吸附型稀土(IREE)矿床的找矿勘查取得重要进展,岔河IREE矿床是该区新发现的中大型矿床之一,为IREE矿床成矿预测提供了研究实例.文章对岔河IREE矿床11个探矿工程风化剖面样品和1370件土壤地球化学样品的稀土元素,以及Ce异常分布、迁移及富集等表生地球化学特征和规律进行研究,结合前人研究成果总结出该区找矿模型,实施工程验证并取得了找矿发现.研究表明,风化花岗岩稀土元素配分模式与母岩相似,风化过程中REE发生淋滤、富集作用(全风化层富集程度最高),LREE和HREE发生了分异作用(LREE分异程度相对较高).在风化过程中,Ce异常与稀土元素氧化物总量(ΣREO)呈负相关,且Ce异常存在明显的分异作用,如风化剖面中黏土层Ce正异常(1.69)与全风化层上部Ce负异常(0.75)数值具有明显差异,为Ce异常用于IREE矿床成矿预测成为可能(见矿率达90%).该研究不仅能定位、定量的圈定IREE矿床成矿预测区,而且完善了IREE矿床找矿模型,具有重要的推广和应用价值.  相似文献   

14.
In vast tropical rain forest areas, weathering profiles are commonly characterized by a “stone line” overlain by a brown-yellow loose-clay horizon. Concordant with the topographic surface, such a stone line may be traced continuously over considerable distances. It is typically composed of coarse fragments of lithorelics, debris of laterite as Fe-oxides nodules, corroded quartz, gibbsitic aggregates, …, embedded in a clayey matrix. These materials cover the saprolitic weathering profile which is typically a few tens of metres thick.The origin of stone lines has given rise to much controversy and are still widely misunderstood. A broad range of processes, allochthonist or autochthonist, have been put forward in the literature. The findings in this paper conclude that these weathering profiles result from chemical leaching and differential movement between the matrix and the coarse fragments which accumulate by downward migration. Accumulation takes place at the lower limit of rain water impregnation and forms the stone line, whereas leaching and homogenization of fine material occur throughout the upper water-impregnated horizon. Although the materials of the loose-clay horizon and of the stone are extensively altered, the relics are chemically rather well recognizable.According to the above hypothesis, stone line weathering profiles should thus be mostly residual. The main aspects of geochemical dispersion processes of some stone line profiles in Gabon are presented as examples. These show that:
1. (a) The vertical redistribution of some major elements in the profiles, accumulation (Fe2O3, Al2O3, SiO2) or leaching (K2O, MgO, CaO, SiO2,..) are different from the bedrock composition;
2. (b) In some situations, it is possible to characterize the bedrock by using groups of trace elements such as V, Ni,.. for basic rocks or Ba, Sr,.. for gneisses for instance; the contrasts obtained can be smoothed in comparison with results from deeper in the profile.
3. (c) The persistence of geochemical anomalies arising from mineralization, throughout the weathering profile, up to the main sampling media, the surface soil. A “mushroom” dispersion pattern can be recognized where the foot of the mushroom corresponds to the element dispersion pattern can be recognized where the foot of the mushroom corresponds to the element dispersion in the saprolite and the bedrock, with the top of the mushroom being partly in the stone line and partly in the loose clay horizon.
Such a dispersion pattern has two consequences on exploration: (1) the spreading out of the surficial signal favoring the identification of anomalies during follow-up on a relatively wide spaced grid; and (2) at the same time, a reduction of the extension of the signals by dilution and leaching according to the weathering process; therefore, relatively low anomaly contents must be taken into account in exploration.Thus, anomalies arising from stone line profiles tend to be well-dispersed, but of weak magnitude, and represent in situ transfer from the parent rock.  相似文献   

15.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   

16.
The behaviour of the rare-earth elements(REE)during the weathering of granites was studied in southern Guangxi,China.Based on the study of the weathering profiles,the soil,weathered and sub-weatereb zones are identified with different REE geochemical behaviours throug the weathering profiles of granite.The Ce anomalies of the weathering profiles cover a large range of values with most falling between 1.02 and 1.43in the soil zone and 0.16and 0.40in the weathered and sub-weathered zones.Light rare-earth elements(LREE) and heavy rare-earth elements(HREE)are enriched to varying degree in the weathering profiles as compared to host granites.In the soil zone,more HREEs are leached than LREEs,and HREEs are more enriched than LREE in the weathered and sub-weathered zones.It is considered that infiltration and adsorption on clays are two processes controlling the enrichment and formation of REE deposits in the weathering profiles of granite.  相似文献   

17.
In this study, an assessment of the lithogenic concentrations of trace metals in soils and saprolite over basement rock units in Ibadan, SW-Nigeria is presented in respect of bedrock types and geochemical controls on the weathering-associated release of trace metals. Consequently, soil, weathered and fresh rock samples from the Precambrian Basement of SW Nigeria were collected from three different bedrock units within Ibadan metropolis and subjected to mineralogical and geochemical analyses. The analytical results revealed major proportions of oxides in the range of 18–20% Al2O3, 2–6% Na2O and 1–6% K2O for weathered profiles over granite-gneiss and pegmatite units, compared to 2–3% Al2O3, <0.5% Na2O and <1.0% K2O over schist-quartzite. For the trace elements, weathered profiles on granite-gneiss and schist-quartzite settings exhibit similar enrichment trends (enrichment factor, EF l) for most of the trace elements, unlike the pegmatite bedrock. However, enrichments are relatively greater in the top soil unit compared to the intermediate saprolite unit, especially for Pb, Ni, Zn, Cr, Co, Rb, Sr and Ba, a situation attributed to leaching and redistribution within the weathered profiles through pedogenetic process and percolating groundwater.Furthermore, the estimated weathering indices using Ruxton Ratio (RR = {SiO2/Al2O3}) and Chemical Index of Alteration (CIA = 100{Al2O3/[Al2O3 + CaO + Na2O + K2O]}) revealed RR of 2.9–3.7 and CIA of 54–73% for granite-gneiss and pegmatite units, implying medium levels of weathering, compared to RR of 30.8–35.5 and CIA of >60% for schist-quartzite units, which suggest weak chemical weathering. Also, the estimated high percentage loss, especially for Pb, Rb, Sr, Ba relative to the bedrocks, shows that the trace elements can be mobilized within the weathering profiles even at a low degree of chemical weathering. Such weathering-induced release of trace metals is of environmental significance as natural lithogenic input sources and as background reference for future monitoring of possible human/anthropogenic impacts.  相似文献   

18.
The clay fractions of saprolites from granites, basalt, and schists in Egypt were subjected to mineralogical and geochemical investigations to examine the effect of source rock on the composition of the saprolites and the possibilities of these saprolites as a source of the nearby sedimentary kaolin deposits. The clay fractions of the studied saprolites show mineralogical and geochemical variations. Saprolites from the granites consist of kaolinite, while saprolites from the basalts are composed entirely of smectite. Schists-derived saprolites are composed of kaolinite in some cases and of a mixture of kaolinite, illite, and chlorite in the other. Saprolite from the basalt is characterized by relatively higher contents of TiO2 and Ni compared to the saprolites from granites. Saprolites from granites have higher contents of Ba, Li, Pb, Sr, Th, Y, and Zr compared to those of the saprolites from the basalts and schists. Saprolites from different schists show variations in the distributions of many constituents, such as TiO2, Cr, Ni, Ba, Y, and Zr. Although chondrite-normalized rare earth elements (REE) patterns are characterized by relative enrichments in the light rare earth elements (LREE) compared to the heavy rare earth elements (HREE) in all saprolites, granitic saprolites show negative Eu anomalies, while saprolite from basalt has no Eu anomaly. REE patterns of the saprolites from schists exhibit slight positive Ce anomalies and slight to moderate negative Eu anomalies. Weathering of saprolites from the basalt and metasediments is classified as the bisiallitization type, while weathering of saprolite from the granite is allitization type. Saprolites from schists vary from the bisiallitization (Aswan and Abu Natash) and allitization (Khaboba) types. Saprolites from the Khaboba schist can be considered the possible source of the Carboniferous kaolin deposits in the Hasber and Khaboba areas of Sinai, based on the similarity in the mineralogy and geochemistry of major, trace, and REE between the saprolites and the deposits. On the other hand, Carboniferous sedimentary kaolin deposits in the Abu Natash area, as well as the Cretaceous kaolin deposits in all areas of Sinai, might have been derived from the nearby schist saprolites, based on the similarity in the mineralogy and geochemistry between the saprolites and the kaolin deposits. Granites from the Arabian-Nubian Shield (ANS) and East Sahara Craton (ESC) are the possible sources of the pisolitic and plastic kaolin deposits in the Kalabsha area (Aswan), as indicated by the similarity in the mineralogy and geochemistry of the granitic saprolites and the kaolin deposits.  相似文献   

19.
Chemical weathering and resulting water compositions in the upper Ganga river in the Himalayas were studied. For the first time, temporal and spatial sampling for a 1 year period (monthly intervals) was carried out and analyzed for dissolved major elements, trace elements, Rare Earth Elements (REE), and strontium isotopic compositions. Amounts of physical and chemical loads show large seasonal variations and the overall physical load dominates over chemical load by a factor of more than three. The dominant physical weathering is also reflected in high quartz and illite/mica contents in suspended sediments. Large seasonal variations also occur in major elemental concentrations. The water type is categorized as HCO3–SO42––Ca2+ dominant, which constitute >60% of the total water composition. On an average, only about 5–12% of HCO3 is derived from silicate lithology, indicating the predominance of carbonate lithology in water chemistry in the head waters of the Ganga river. More than 80% Na+ and K+ are derived from silicate lithology. The silicate lithology is responsible for the release of low Sr with extremely radiogenic Sr (87Sr/86 Sr>0.75) in Bhagirathi at Devprayag. However, there is evidence for other end-member lithologies for Sr other than carbonate and silicate lithology. Trace elements concentrations do not indicate any pollution, although presence of arsenic could be a cause for concern. High uranium mobilization from silicate rocks is also observed. The REE is much less compared to other major world rivers such as the Amazon, perhaps because in the present study, only samples filtered through <0.2 m were analysed. Negative Eu anomalies in suspended sediments is due to the excess carbonate rock weathering in the source area.  相似文献   

20.
Geochemical and geochronological studies were conducted on basalts and laterites from the Bolaven Plateau in southern Laos in order to evaluate the mobility and mineralization of REE, Y and Sc during laterization. The basalts are classified into three categories: (i) small volumetric alkali basalt (eruption age: 15.7 Ma), large volumetric olivine tholeiite (1.2 Ma) and quartz tholeiite with olivine tholeiite (younger than 0.5 ± 0.2 Ma). Formation of REE minerals during laterization result in mobilization and fractionation of REE and Y in laterite profiles. Occurrence of florencite‐(Ce) in a laterite profile derived from alkali basalt immobilizes REE (particularly LREE) and this leads the laterites to be enriched in LREE relative to the parent basalt. Few positive Ce anomalies in this profile suggest that florencite‐(Ce) [(Ce)Al3(PO4)2(OH)2] formation was followed by CeO2 precipitation due to the change of redox condition. In tholeiite‐derived laterite profiles, florencite is not recognized and REE and Y tend to be depleted relative to the parent basalts with positive Ce anomalies. This is interpreted as scavenging REE3+ except for Ce4+ from the laterite profile in oxidizing conditions. Sc behaves similarly to Fe during laterization and it is more abundant in the tholeiitic laterite than that in the alkali basaltic laterite. Results of sequential extraction indicate that REE of the alkali basaltic laterite are contained in residual phase, which is dominantly florencite‐(Ce), but they are rarely present in ion‐adsorption phase. It is concluded that basaltic laterites have a low potential of REE resource in terms of low REE contents and a difficulty in REE extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号