首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
天线相位中心改正对GPS精密单点定位的影响   总被引:1,自引:0,他引:1  
GPS卫星与接收机由于自身特性以及机械加工等原因,导致其质量中心与相位中心不重合而产生相位中心误差,进而对GPS精密单点定位产生一定影响。介绍GPS天线相位中心偏移(PCO)、变化(PCV)的原理,并分析PCO、PCV,以及不同模型改正对GPS精密单点定位的影响。结果表明,在GPS精密单点定位中,天线相位中心改正不容忽略:在平面方向上,天线相位中心改正对定位影响较小,仅为毫米级;在高程方向上,天线相位中心改正对定位影响较大,可达厘米级;与相对中心改正模型相比,绝对相位中心改正模型精度更高。  相似文献   

2.
不等分经纬线多圆锥投影的设计与解析计算方法   总被引:2,自引:0,他引:2  
用多圆锥投影作为世界图的数学基础,可以获得较良好的面积和角度变形。但以往的多圆锥投影,多为等分纬线的,在改善变形方面又有其局限性。若采用不等分经纬线的多圆锥投影,则可克服这一局限性。文章中,作者提出了建立不等分经纬线多圆锥投影的方法和计算变形的解析式子。本法的主要特点是:经线方程用的参数方程表示:x_(ij)=a_(0i)_j+a_(1i)_j~3+a_(2i)_j~5,y_(ij)=b_(0i)+b_(1i)_j~2+b_(2i)_j~4+b_(3i)_j~6。赤道方程用λ的奇次冪方程表示:x_(i0)=0,y_(i0)=c_0λ_i+c_1λ_i~3+c_2λ_i~5+c_3λ_i~7。非零度的纬线方程则用多圆锥投影一般公式表示x_(ij)=q_i-ρ_jcosδ_(ij),y_(ij)=ρ_jsinδ_(ij),式中δ_(ij)则由相应的赤道坐标(已由赤道方程求到)乘上一个与纬度有关的常数求得。关于经线的圆滑性问题,文章作了专门的讨论。为了简化经线方程和赤道方程的解算工作,作者提出了“过渡引数”法作为补充。“过渡引数”法即是:解经线或赤道方程时,不直接用或λ的弧度数为引数,而用一个简单的数ψ或θ为过渡。而ψ与,λ与θ之间则以一个常数α和β相联系。文章中应用本法,设计了一个适用于世界政治交通图的投影。在该投影中,1.0的面积等变形线正好通过我国中部,因而使  相似文献   

3.
介绍了GNSS天线相位中心改正的基本概念和定义,分析了相位中心偏差(PCO)和变化(PCV)的改正公式,以及天线相位中心改正从相对相位中心模型到绝对相位中心模型的演变,最后结合软件对相位中心改正的实现方法进行了介绍。  相似文献   

4.
利用天线相位中心改正模型并结合GAMIT软件对GPS观测数据进行了处理,分析对比了采用天线相位中心变化的相对改正模型和绝对改正模型对GPS基线解算产生的不同影响,结果显示,使用绝对相位中心改正模型得到的基线解算更为精确,解算结果还表明,若不对天线相位中心变化进行改正,会对解算结果造成数厘米的差异,所以在高精度工程数据处理时应当采用天线相位中心改正。  相似文献   

5.
针对南极地区全球定位系统(GPS)数据解算结果精度较差的问题,该文通过选取合适的解算策略来得到高精度的解算结果。采用GAMIT软件对我国南极地区的长城站、中山站及周边的11个IGS站进行数据处理,对比分析了不使用天线相位中心改正模型以及相对和绝对天线相位中心改正模型对基线解算的影响。结果表明,在南极地区进行高精度GPS数据处理时应考虑天线相位中心的影响,绝对相位中心改正模型比相对相位中心改正模型得到的结果更为精确。  相似文献   

6.
比较了IGS发布的相对天线相位中心改正模型与绝对天线相位中心改正模型,分析了两种不同模型对精密单点定位(PPP)参数估计的影响。结果表明,采用不同的天线相位中心改正模型,天顶对流层延迟(ZPD)的估值存在5mm左右的差异,接收机钟差参数存在3ns左右的差异,估计的测站坐标高程方向有1cm左右的差异。使用绝对天线相位中心模型估计得到的ZPD精度优于5mm,高程方向定位精度约为1cm,接收机钟差估计的精度达0.1ns。  相似文献   

7.
吴正  胡友健  敖敏思  于宪煜  郑广 《地理空间信息》2012,10(6):56-58,78,4,3
由于天线本身的特性及机械加工等原因,GPS卫星和接收机天线相位中心与其几何中心不重合,从而产生相位中心偏差。某些类型的天线该偏差甚至可达数cm,直接影响高精度GPS测量的精确可靠性[1]。讨论了GAMIT软件在高精度GPS数据处理中进行天线相位中心改正的原理、方法和策略,结合美国IGS观测站及南加州区域站观测数据,对改正方法及策略进行了实验对比与分析。结果表明:对接收机天线相位中心和卫星天线相位中心采用模型改正,而卫星天线相位中心偏移不改正,所得到的基线解算结果较好[2];地面接收机天线方位角的变化对U方向的基线解算结果有较大影响,在高精度GPS测量中,必须进行天线方位角的变化改正。  相似文献   

8.
由于天线本身的特性及机械加工等原因,GPS卫星和接收机天线相位中心与其几何中心不重合,从而产生相位中心偏差。某些类型的天线该偏差甚至可达数cm,直接影响高精度GPS测量的精确可靠性。IGS改正模型文件中给出的是每隔5°方位角和天顶角时的天线相位中心变化改正值,本文用VS程序设计通过线性内插算法获得任意方位角和天顶角下的相位中心变化改正值。  相似文献   

9.
GPS天线相位中心偏差的数学模型   总被引:3,自引:0,他引:3  
初东  王刚 《测绘工程》2000,9(4):55-57
叙述了天线相位中心的检测方法.改进了GPS天线相位中心偏差的数学模型.在不考虑天线相位中心随卫星高度、方位角变化时该模型可以准确地计算出天线相位中心水平偏差大小与方向和垂直偏差的大小,从而提高了天线相位中心偏差的确定精度。实例表明,本文所提出的方法可以较准确地判断出天线相位中心水平偏差的大小与方向。  相似文献   

10.
精确标定导航卫星发射天线相位中心对于高精度GNSS(globalnavigationsatellitesystem)数据处理十分重要,对于低轨卫星(lowearthorbit,LEO)精密定轨更是如此。本文以GPS为例,首先探讨了一种基于LEO简化动力学精密定轨残差建模的方法,对导航卫星发射天线相位中心变化(phasecentervariation,PCV)进行标定,与IGS08_1745.atx(internationalGNSSservice,IGS)的PCV比较结果表明,本文所得PCV在天底角低于14°部分与IGS的PCV差异约1mm,并且有效地将天底角(nadirangle)拓展至17°;最后采用多种方案讨论了导航卫星PCV对JASON2精密定轨的影响。结果表明,导航卫星PCV可导致1~2cm的定轨误差。其中利用本文所得PCV可实现3DRMS约3cm、径向约1cm的定轨精度,与采用IGS的PCV定轨精度相当,本方法可为北斗卫星发射天线相位中心变化的标定提供参考。  相似文献   

11.
线性回归模型估算水稻叶片叶绿素含量的适宜性分析   总被引:16,自引:0,他引:16  
利用PROSPECT模型模拟水稻叶片叶绿素含量从20.0μg/cm^2变化到40.0μg/cm^2时的叶片光谱特性,利用FCR模型模拟叶面积指数(LAI)为1,2,…,7时,不同地面状态下,4个不同观测方向的水稻冠层反射率。利用LAI为1,3,5,7时的模拟值,采用多元逐步回归分析法,从不同观测方向建立叶片叶绿素含量与冠层反射率(见)及其变化式ln(1/Rλ),R’λ的多元线性回归模型,并用复相关系数和均方根差评价拟合精度,认为ln(1/Rλ)以及从天顶方向的拟合效果最好。利用从天顶方向建立的回归模型,预测叶片叶绿素含量,认为将该回归模型应用于其它方向是不合适的,从天顶方向预测时,预测精度受地面状态的影响,但总的说来,预测精度呈现随LAI的增大而提高的趋势。  相似文献   

12.
利用厂商模型、MGEX模型和ESA模型对BDS卫星天线相位中心偏差进行改正,结果表明,3种模型对BDS精密单点定位精度均有所提升,其中,水平方向提升1~2 cm,高程方向定位精度由1 dm提升为厘米级,ESA模型优于另外两种模型。利用GPS接收机天线相位中心偏差改正值对BDS接收机天线相位中心偏差进行改正,其精度改善情况随天线类型的不同而存在差异,水平方向精度影响为毫米级,高程方向与天线类型有关,精度影响最大可达厘米级。  相似文献   

13.
阐述了天线相位中心改正的数学模型和天线相位中心变化的数字模型,对实测的GPS控制网进行了数据处理,通过加上/不加天线相位中心变化的改正来考察对基线解算结果的影响。试验表明,卫星天线相位中心变化对长基线有影响,对短基线没有影响。接收机天线相位中心变化对基线解的影响与基线两端接收机天线型号是否相同有关:型号相同时没有影响;型号不同时有影响,影响量大约为0.02 ppm。  相似文献   

14.
在高精度GNSS定位中,接收机天线相位中心偏差(PCO)和天线相位中心变化(PCV)的影响不可忽略。目前,IGS发布的绝对天线相位模型文件中包含了GPS/GLONASS系统的标定值,但是没有发布北斗系统(BDS)的标定值。本文借助机械臂可以控制天线自由旋转,在数小时内实现全方位GNSS观测的特性,采用历元间差分的方法对接收机天线包括GPS L1/L2和BDSB1I/B2I/B3I等多个频点的PCO和PCV分别进行标定和拟合。标定结果表明,比较最小二乘估计的GPS PCO与IGS发布值,其STD和RMS在L1/L2上均小于1 mm;BDS PCO估计值的STD在B1I/B2I/B3I上分别为0.5、0.3、0.3 mm。利用球谐函数拟合的GPS PCV格网值与IGS发布值相比,其偏差在天顶距小于75°时均小于1.5 mm。BDS PCV拟合值范围均在-5~8 mm,且随天顶距变化曲线呈现波谷状。BDS PCV在低高度角处拟合值波动较大,随方位角变化曲线峰值-峰值最大达到了5.6 mm。  相似文献   

15.
天文经度的测定精度要求按细则规定不应超过±0.~s03,一般评定公式如下:M_λ=±(M_λ~(12) M_((?)λ)~(2~2) M_((?)Δλ)~2)~(1/2)式中M′_λ为一等经度的测定中误差(根据观测的内部符合情况计算的);  相似文献   

16.
渤海近岸水体漫衰减系数Kd(490)遥感反演模型   总被引:2,自引:0,他引:2       下载免费PDF全文
崔廷伟  张杰  马毅  孙凌  赵文静 《遥感学报》2009,13(3):417-429
利用2005年渤海近岸水体生物光学数据集, 建立了基于水体遥感反射率光谱Rrs(λ)数据的490nm波段水体漫衰减系数Kd(490)经验反演模型, 经实测数据检验, 模型反演结果的平均相对误差为18.4%, 均方根误差(对数坐标下)为0.094m-1, 相关系数R2 (对数坐标下)为0.902。分析了模型的噪声敏感性, 在输入端引入±5%误差的情况下, 模型反演结果的平均相对误差波动在9%以内, 均方根误差的变化在0.035m-1以内, 模型是稳定可靠的。以ENVISAT MERIS数据为例, 进行了模型的示范应用, 给出了渤海Kd(490)的空间分布。  相似文献   

17.
针对国产不同品牌不同型号的地面接收机天线相位中心(antenna phase center, APC)模型及仪器厂商模型差异,本文分别采用相对定位及精密单点定位(precise single-point positioning,PPP)方法,分析了GPS/BDS高精度定位中基于不同APC改正模型引起的站点估计位置差异,获得了各不同天线APC改正模型对站点估计位置影响的平均差异值.试验结果表明:不同APC改正模型对站点定位精度的影响相当,对站点估计位置在平面方向影响较小,U方向影响较大;同一种类型的天线在不同实验区域造成的影响具有较好的一致性;同品牌天线对站点估计位置的影响有一定的相似性,尤其是同品牌系列产品其相位中心的影响更为接近.  相似文献   

18.
天线相位中心是GPS接收机测量时的参考点.相位中心并不是固定的,它会随不同的信号入射方向发生移动,移动幅度达几个毫米甚至几厘米.相位中心的变化直接影响GPS伪距和载波相位观测量的测量.为了更好地满足一些高精度测量的需要,相位中心的变化量在解算时必须考虑进去.本文对相位中心定义进行了解释,对GPS相位中心及其稳定性进行了分析,并对GPS天线相位中心的测量方法进行了阐述.对自主研制的双频GPS天线相位中心进行了测定,得出相位中心随俯仰角变化的曲线.  相似文献   

19.
与分析中心保持一致的卫星姿态模型是精密单点定位(PPP)获得高精度定位的关键因素。本文基于武汉大学分析中心(WUM)提供的卫星姿态四元数产品,详细阐述了利用卫星姿态四元数计算偏航角的方法。针对卫星在太阳高度角较低的情况,分析了WUM对BDS-2/BDS-3所采用的姿态模型策略,并基于开源定位软件GAMP深入研究了不同的卫星姿态模型策略对BDS-2/BDS-3 PPP定位的影响。研究表明,在深地影时期,不一致的姿态模型会导致偏航角出现360°的差异,进而使相位缠绕和卫星天线相位中心改正出现分米级的偏差。在此期间,使用卫星姿态四元数产品,与名义姿态相比PPP的定位精度在东、北和天顶方向能分别提高约32%、29%和38%;相较于剔除姿态异常卫星策略(剔除远日点和近日点的卫星),PPP的定位精度在3个方向分别能提高约29%、25%和28%。因此,PPP用户应采用各分析中心提供的卫星姿态四元数产品进行天线相位中心改正(PCO)和相位缠绕改正,避免使用不一致的姿态模型导致PPP定位结果的可靠性降低。  相似文献   

20.
结合多频伪距/载波相位组合的周跳探测与修复原理,给出了优化的多频相位组合周跳检验量模型的确定方法。以组合观测值周跳的最小估计方差为衡量标准,确定(0,1,-1)、(-3,1,3)、(1,-7,6)为优化组合模型;用VB编写了多频组合周跳探测程序,并结合实例与其他模型进行了对比分析。结果表明,该模型的周跳探测精度优于其他模型,且能准确探测出各频率的周跳,探测效果明显,结果可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号