首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 830 毫秒
1.
比较了IGS发布的相对天线相位中心改正模型与绝对天线相位中心改正模型,分析了两种不同模型对精密单点定位(PPP)参数估计的影响。结果表明,采用不同的天线相位中心改正模型,天顶对流层延迟(ZPD)的估值存在5mm左右的差异,接收机钟差参数存在3ns左右的差异,估计的测站坐标高程方向有1cm左右的差异。使用绝对天线相位中心模型估计得到的ZPD精度优于5mm,高程方向定位精度约为1cm,接收机钟差估计的精度达0.1ns。  相似文献   

2.
利用天线相位中心改正模型并结合GAMIT软件对GPS观测数据进行了处理,分析对比了采用天线相位中心变化的相对改正模型和绝对改正模型对GPS基线解算产生的不同影响,结果显示,使用绝对相位中心改正模型得到的基线解算更为精确,解算结果还表明,若不对天线相位中心变化进行改正,会对解算结果造成数厘米的差异,所以在高精度工程数据处理时应当采用天线相位中心改正。  相似文献   

3.
针对南极地区全球定位系统(GPS)数据解算结果精度较差的问题,该文通过选取合适的解算策略来得到高精度的解算结果。采用GAMIT软件对我国南极地区的长城站、中山站及周边的11个IGS站进行数据处理,对比分析了不使用天线相位中心改正模型以及相对和绝对天线相位中心改正模型对基线解算的影响。结果表明,在南极地区进行高精度GPS数据处理时应考虑天线相位中心的影响,绝对相位中心改正模型比相对相位中心改正模型得到的结果更为精确。  相似文献   

4.
天线相位中心改正对GPS精密单点定位的影响   总被引:1,自引:0,他引:1  
GPS卫星与接收机由于自身特性以及机械加工等原因,导致其质量中心与相位中心不重合而产生相位中心误差,进而对GPS精密单点定位产生一定影响。介绍GPS天线相位中心偏移(PCO)、变化(PCV)的原理,并分析PCO、PCV,以及不同模型改正对GPS精密单点定位的影响。结果表明,在GPS精密单点定位中,天线相位中心改正不容忽略:在平面方向上,天线相位中心改正对定位影响较小,仅为毫米级;在高程方向上,天线相位中心改正对定位影响较大,可达厘米级;与相对中心改正模型相比,绝对相位中心改正模型精度更高。  相似文献   

5.
本文从天线相位中心改正的原理出发,介绍了如何在 GAMIT 中添加天线相位中心改正参数,并通过两组实验分别验证了几种GAMIT解算中未知类型天线相位中心的改正方法,对实验结果进行比对分析,对几种方案的适用情况进行了总结。  相似文献   

6.
利用厂商模型、MGEX模型和ESA模型对BDS卫星天线相位中心偏差进行改正,结果表明,3种模型对BDS精密单点定位精度均有所提升,其中,水平方向提升1~2 cm,高程方向定位精度由1 dm提升为厘米级,ESA模型优于另外两种模型。利用GPS接收机天线相位中心偏差改正值对BDS接收机天线相位中心偏差进行改正,其精度改善情况随天线类型的不同而存在差异,水平方向精度影响为毫米级,高程方向与天线类型有关,精度影响最大可达厘米级。  相似文献   

7.
GPS天线相位模型变化对高精度GPS测量解算的影响研究   总被引:1,自引:0,他引:1  
GPS天线存在相位中心偏差,在高精度测量中必须对其进行补偿改正。本文针对GPS天线的两种改正模型:相对改正模型和绝对改正模型,在讨论了它们所具有的相同改正办法的基础上,分析了它们在测定方法上存在区别,最后通过一个算例分别研究了这两种模型对GPS测量解算精度的影响,得出了一些有意义的结论。  相似文献   

8.
吴正  胡友健  敖敏思  于宪煜  郑广 《地理空间信息》2012,10(6):56-58,78,4,3
由于天线本身的特性及机械加工等原因,GPS卫星和接收机天线相位中心与其几何中心不重合,从而产生相位中心偏差。某些类型的天线该偏差甚至可达数cm,直接影响高精度GPS测量的精确可靠性[1]。讨论了GAMIT软件在高精度GPS数据处理中进行天线相位中心改正的原理、方法和策略,结合美国IGS观测站及南加州区域站观测数据,对改正方法及策略进行了实验对比与分析。结果表明:对接收机天线相位中心和卫星天线相位中心采用模型改正,而卫星天线相位中心偏移不改正,所得到的基线解算结果较好[2];地面接收机天线方位角的变化对U方向的基线解算结果有较大影响,在高精度GPS测量中,必须进行天线方位角的变化改正。  相似文献   

9.
GPS天线相位中心误差是影响GPS测量精度的一项重要误差源。因此,在进行高精度的GPS定位测量时,必须进行天线定向,并对天线相位中心进行必要的模型改正。介绍了采用规范中常规相对定位检测法,检测出天线相位中心偏差的水平分量与垂直分量,并分析了该方法存在的不足。针对该方法的不足,提出了一种改进的新检测方法。实例表明,新方法可以快速简便地检测出天线相位中心偏差的水平分量,并具有较高的精度和可靠性,适合野外对GPS天线的检测。  相似文献   

10.
针对高精度GPS测量中天线相位中心的修正效果问题,该文对GPS扼流圈天线相位中心修正在不同长度基线解算中的影响进行了实验分析。根据不同类型天线间的高程测量受相位中心修正影响较为显著的实验结果,提出利用超短基线水准比对法对相位中心改正模型的修正效果进行评价,开展了相关理论分析,并利用该方法对两种相位中心改正模型的修正效果进行了实验研究。实验结果表明,超短基线水准比对法可以作为天线相位中心校准工作中检验校准结果的新手段。  相似文献   

11.
王清华 《北京测绘》2020,(2):167-171
对于高精度的GNSS数据处理,特别是当多种品牌的GNSS接收机共同作业时,对天线进行相位中心改正是非常有必要的。当采用TBC处理非天宝类型GNSS接收机数据时,在导入数据时,有时会出现不识别接收机和天线类型的错误或警告。通过修改Rinex格式文件头的接收机及天线类型,使其与TBC软件中接收机及天线配置文件中信息一致,问题得到解决。本文还对此类问题做了一些引申,结语给出了若干条建议。  相似文献   

12.
GNSS天线相位中心偏差是GNSS天线接收卫星信号的电气中心与其机械几何中心之差。相位偏差具有一定的稳定性,呈现系统误差性质。现行规程将相位偏差按限差要求加以检测,而没有按系统误差加以检定并进行改正,本文对规程的检定方法加以改进,定量检定天线相位偏差半径r和偏差角a,并依据r值的大小,给出相位偏差在GNSS测量中的采用原则,对两种改进方法进行了测量不确定度分析。  相似文献   

13.
导航卫星天线相位中心误差标定方法研究现状及发展趋势   总被引:1,自引:0,他引:1  
卫星天线相位中心误差是影响GNSS高精度定位定轨的重要误差源,实用中需要对其精确标定。随着北斗卫星导航系统的建设发展,如何对卫星天线相位中心误差进行更为精确的标定应引起人们的重视。为此,本文首先简要介绍了各卫星导航系统的卫星天线情况,而后系统总结了导航卫星天线相位中心误差标定方法的发展历程和研究现状,指出了未来卫星天线相位中心误差标定方法的发展趋势,相关研究成果对我国北斗卫星天线相位中心误差的标定方法研究具有参考意义。  相似文献   

14.
天线相位中心偏移和变化对高精度GPS数据处理的影响   总被引:6,自引:0,他引:6  
介绍了GPS天线相位中心偏移、变化的校准方法和GPS天线相位中心改化的原理,并通过GAMIT软件描述了改化算法。计算了天线相位中心变化对GPS定位结果的影响,给出了高精度GPS数据处理中关于天线相位中心改化的方法和建议。  相似文献   

15.
北斗天线电气相位中心偏差检验试验研究   总被引:1,自引:0,他引:1  
为满足北斗双星定位系统精密定位、定向的工程需要,提出一种北斗天线电气相位中心常值偏差3维检验方法,并建立了相应的数学模型.该方法通过基线旋转、单天线旋转、交换天线,利用载波相位单差、基线长度、天线高差测量信息来估计天线电气相位中心偏差,并且在单天线旋转条件下对不同方向、不同天线间单差观测方程求差,以减少未知参数个数.最后,应用此模型检验一对北斗天线,检验结果表明,在单差均方差为0.005周,基线长度、天线间高差均方差为1 mm的条件下,天线间电气相位中心偏差水平分量的检验精度达0.3 mm.论文所述方法操作简单,适合在野外对北斗天线进行电气相位中心偏差检验.  相似文献   

16.
在高精度GNSS定位中,接收机天线相位中心偏差(PCO)和天线相位中心变化(PCV)的影响不可忽略。目前,IGS发布的绝对天线相位模型文件中包含了GPS/GLONASS系统的标定值,但是没有发布北斗系统(BDS)的标定值。本文借助机械臂可以控制天线自由旋转,在数小时内实现全方位GNSS观测的特性,采用历元间差分的方法对接收机天线包括GPS L1/L2和BDSB1I/B2I/B3I等多个频点的PCO和PCV分别进行标定和拟合。标定结果表明,比较最小二乘估计的GPS PCO与IGS发布值,其STD和RMS在L1/L2上均小于1 mm;BDS PCO估计值的STD在B1I/B2I/B3I上分别为0.5、0.3、0.3 mm。利用球谐函数拟合的GPS PCV格网值与IGS发布值相比,其偏差在天顶距小于75°时均小于1.5 mm。BDS PCV拟合值范围均在-5~8 mm,且随天顶距变化曲线呈现波谷状。BDS PCV在低高度角处拟合值波动较大,随方位角变化曲线峰值-峰值最大达到了5.6 mm。  相似文献   

17.
机载SAR影像主动定位的数学模型研究   总被引:1,自引:0,他引:1  
本文基于差分GPS(Differential Global Positioning System,DGPS)和惯性导航系统(Inertial Navigation System,INS)数据,在无控制点的情况下,导出了一种进行机载SAR影像主动定位的数学模型。此模型包括DGPS/INS数据进行坐标系转换、天线动态偏心改正、雷达天线相位中心插值和距离-多普勒(Range-Doppler,R-D)模型及解算。根据距离-多普勒(Range-Doppler,R-D)模型和数字高程模型(Digital Elevation Model,DEM)数据,获得机载SAR影像上每点所对应的地理坐标,重采样生成正射影像图。本文通过成都测区1m分辨率的机载SAR影像主动定位试验,验证了此数学模型的正确性,分析了主要系统误差源及系统误差的改正方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号