首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the biweekly sea surface temperature (SST) in the South China Sea (SCS) on the SCS summer monsoon, especially during the Indian Ocean Dipole (IOD) is presented using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) SST and rainfall data for April to June from 1999 to 2013. During positive IOD (PIOD) years the biweekly SST anomalies over the SCS lead the rain anomalies by three days, with a significant correlation (r?=?0.8, at the 99% confidence level), whereas during negative IOD (NIOD) years, the correlation is only 0.2. The biweekly SST is observed to influence the westward and northward propagating rainfall anomalies over the SCS and, hence, affect the SCS summer monsoon, especially during PIOD years. No such propagation was seen during NIOD years. The biweekly intraseasonal oscillation of SST in the SCS results in enhanced sea level pressure and surface shortwave radiation, especially during PIOD years. The potential findings here indicate that the biweekly SST in the SCS is strongly (weakly) influenced during PIOD (NIOD) years. Further, it is observed that SST in the SCS has a strong (weak) effect on the SCS summer monsoon by westward and northward propagation of rainfall, especially during PIOD (NIOD) years. When a PIOD or NIOD exists over the tropical Indian Ocean, the SCS SST will be strongly (r?=?0.6, at the 99% confidence level) or weakly correlated with the residual index, respectively.  相似文献   

2.
This study investigates the structure and propagation of intraseasonal sea surface temperature(SST) variability in the South China Sea(SCS) on the 30–60-day timescale during boreal summer(May–September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30–60-day SST variability is predominant, accounting for 60% of the variance of the 10–90-day variability over most of the SCS. Composite analyses demonstrate that the 30–60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive(negative) SST anomalies accompanied by anomalous northeasterlies(southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough–ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30–60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux(MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the30–60-day SST variability in the SCS.  相似文献   

3.
Intraseasonal variability of latent-heat flux in the South China Sea   总被引:7,自引:0,他引:7  
Intraseasonal variability (ISV) of latent-heat flux in the South China Sea (SCS) is examined using 9 years of weekly data from January 1998 to December 2006. Using harmonic and composite analysis, some fundamental features of the latent-heat flux ISVs are revealed. Intraseasonal latent-heat flux has two spectral peaks around 28–35 and 49–56 days, comparable with the timescales of the atmospheric ISV in the region. Active monsoon is clearly correlated with positive and negative phases of the ISV of latent-heat flux in the SCS. The characteristics of the intraseasonal latent-heat flux variations in summer are remarkably different from those in winter. The amplitudes of significant intraseasonal oscillations are about 35 and 80 W?m?2 during summer and winter monsoons, respectively. In summer, the intraseasonal latent-heat flux perturbations are characterized by slow eastward (about 1° latitude/day) and slower northward (about 0.75° longitude/day) propagations, probably in a response to eastward and northward propagating Madden-Julian oscillations (MJOs) from the equatorial Indian Ocean. In contrast, the perturbations appear to remain in the northern SCS region like a quasi-stationary wave in winter. In summer, the intraseasonal latent-heat flux fluctuations are highly correlated with wind speed. In winter, however, they are primarily associated with winds and near-surface air humidity. In addition, the intraseasonal SST variation is estimated to significantly reduce the amplitude of the intraseasonal latent-heat flux by 20% during winter.  相似文献   

4.
Wang  Zhenzhen  Wu  Renguang 《Climate Dynamics》2021,56(11):3995-4012

A region of low sea surface temperature (SST) extends southward in the central part of southern South China Sea during boreal winter, which is called the South China Sea cold tongue (SCS CT). The present study investigates the factors of interannual variation of SST in the SCS CT region and explores the individual and combined impacts of El Niño-Southern Oscillation (ENSO) and East Asian winter monsoon (EAWM) on the SCS CT intensity. During years with ENSO alone or with co-existing ENSO and anomalous EAWM, shortwave radiation and ocean horizontal advection play major roles in the interannual variation of the SCS CT intensity. Ocean advection contributes largely to the SST change in the region southeast of Vietnam. In strong CT years with anomalous EAWM alone, surface wind-related latent heat flux has a major role and shortwave radiation is secondary to the EAWM-induced change of the SCS CT intensity, whereas the role of ocean horizontal advection is relatively small. The above differences in the roles of ocean advection and latent heat flux are associated with the distribution of low level wind anomalies. In anomalous CT years with ENSO, low level anomalous cyclone/anticyclone-related wind speed change leads to latent heat flux anomalies with effects opposite to shortwave radiation. In strong CT years with anomalous EAWM alone, surface wind-related latent heat flux anomalies are large as anomalous winds are aligned with climatological winds.

  相似文献   

5.
During boreal winter, there is a prominent maximum of intraseasonal sea-surface temperature (SST) variability associated with the Madden?CJulian Oscillation (MJO) along a Thermocline Ridge located in the southwestern Indian Ocean (5°S?C10°S, 60°E?C90°E; TRIO region). There is an ongoing debate about the relative importance of air-sea heat fluxes and oceanic processes in driving this intraseasonal SST variability. Furthermore, various studies have suggested that interannual variability of the oceanic structure in the TRIO region could modulate the amplitude of the MJO-driven SST response. In this study, we use observations and ocean general circulation model (OGCM) experiments to quantify these two effects over the 1997?C2006 period. Observational analysis indicates that Ekman pumping does not contribute significantly (on average) to intraseasonal SST variability. It is, however, difficult to quantify the relative contribution of net heat fluxes and entrainment to SST intraseasonal variability from observations alone. We therefore use a suite of OGCM experiments to isolate the impacts of each process. During 1997?C2006, wind stress contributed on average only about 20% of the intraseasonal SST variability (averaged over the TRIO region), while heat fluxes contributed about 70%, with forcing by shortwave radiation (75%) dominating the other flux components (25%). This estimate is consistent with an independent air-sea flux product, which indicates that shortwave radiation contributes 68% of intraseasonal heat flux variability. The time scale of the heat-flux perturbation, in addition to its amplitude, is also important in controlling the intraseasonal SST signature, with longer periods favouring a larger response. There are also strong year-to-year variations in the respective role of heat fluxes and wind stress. Of the five strong cooling events identified in both observations and the model (two in 1999 and one in 2000, 2001 and 2002), intraseasonal-wind stress dominates the SST signature during 2001 and contributes significantly during 2000. Interannual variations of the subsurface thermal structure associated with the Indian Ocean Dipole or El Ni?o/La Ni?a events modulate the MJO-driven SST signature only moderately (by up to 30%), mainly by changing the temperature of water entrained into the mixed layer. The primary factor that controls year-to-year changes in the amplitude of TRIO, intraseasonal SST anomalies is hence the characteristics of intraseasonal surface flux perturbations, rather than changes in the underlying oceanic state.  相似文献   

6.
Zhuoqi He  Renguang Wu 《Climate Dynamics》2014,42(9-10):2323-2337
This study investigates summer rainfall variability in the South China Sea (SCS) region and the roles of remote sea surface temperature (SST) forcing in the tropical Indian and Pacific Ocean regions. The SCS summer rainfall displays a positive and negative relationship with simultaneous SST in the equatorial central Pacific (ECP) and the North Indian Ocean (NIO), respectively. Positive ECP SST anomalies induce an anomalous low-level cyclone over the SCS-western North Pacific as a Rossby-wave type response, leading to above-normal precipitation over northern SCS. Negative NIO SST anomalies contribute to anomalous cyclonic winds over the western North Pacific by an anomalous east–west vertical circulation north of the equator, favoring more rainfall over northern SCS. These NIO SST anomalies are closely related to preceding La Niña and El Niño events through the “atmospheric bridge”. Thus, the NIO SST anomalies serve as a medium for an indirect impact of preceding ECP SST anomalies on the SCS summer rainfall variability. The ECP SST influence is identified to be dominant after 1990 and the NIO SST impact is relatively more important during 1980s. These Indo-Pacific SST effects are further investigated by conducting numerical experiments with an atmospheric general circulation model. The consistency between the numerical experiments and the observations enhances the credibility of the Indo-Pacific SST influence on the SCS summer rainfall variability.  相似文献   

7.
The SST-precipitation relationship in the intraseasonal variability (ISV) over the Asian monsoon region is examined using recent high quality satellite data and simulations from a state of the art coupled model, the climate forecast system version 2 (CFSv2). CFSv2 demonstrates high skill in reproducing the spatial distribution of the observed climatological mean summer monsoon precipitation along with its interannual variability, a task which has been a conundrum for many recent climate coupled models. The model also exhibits reasonable skill in simulating coherent northward propagating monsoon intraseasonal anomalies including SST and precipitation, which are generally consistent with observed ISV characteristics. Results from the observations and the model establish the existence of spatial variability in the atmospheric convective response to SST anomalies, over the Asian monsoon domain on intraseasonal timescales. The response is fast over the Arabian Sea, where precipitation lags SST by ~5 days; whereas it is slow over the Bay of Bengal and South China Sea, with a lag of ~12 days. The intraseasonal SST anomalies result in a similar atmospheric response across the basins, which consists of a destabilization of the bottom of the atmospheric column, as observed from the equivalent potential temperature anomalies near the surface. However, the presence of a relatively strong surface convergence over the Arabian Sea, due to the presence of a strong zonal gradient in SST, which accelerates the upward motion of the moist air, results in a relatively faster response in terms of the local precipitation anomalies over the Arabian Sea than over the Bay of Bengal and South China Sea. With respect to the observations, the ocean–atmosphere coupling is well simulated in the model, though with an overestimation of the intraseasonal SST anomalies, leading to an exaggerated SST-precipitation relationship. A detailed examination points to a systematic bias in the thickness of the mixed layer of the ocean model, which needs to be rectified. A too shallow (deep) mixed layer enhances (suppress) the amplitude of the intraseasonal SST anomalies, thereby amplifying (lessening) the ISV and the active-break phases of the monsoon in the model.  相似文献   

8.
Subseasonal variability during the South China Sea summer monsoon onset   总被引:7,自引:5,他引:2  
Analysis of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data for the period 1998–2007 reveals large subseasonal fluctuations in sea surface temperature (SST) of the South China Sea during the summer monsoon onset. These subseasonal SST changes are closely related to surface heat flux anomalies induced by surface wind and cloud changes in association with the summer monsoon onset. The SST changes feed back on the atmosphere by modifying the atmospheric instability. The results suggest that the South China Sea summer monsoon onset involves ocean–atmosphere coupling on subseasonal timescales. While the SST response to surface heat flux changes is quick and dramatic, the time lag between the SST anomalies and the atmospheric convection response varies largely from year to year. The spatial–temporal evolution of subseasonal anomalies indicates that the subseasonal variability affecting the South China Sea summer monsoon onset starts over the equatorial western Pacific, propagates northward to the Philippine Sea, and then moves westward to the South China Sea. The propagation of these subseasonal anomalies is related to the ocean–atmosphere interaction, involving the wind-evaporation and cloud-radiation effects on SST as well as SST impacts on lower-level convergence over the equatorial western Pacific and atmospheric instability over the Philippine Sea and the South China Sea.  相似文献   

9.
祁莉  泮琬楠 《大气科学》2021,45(5):1039-1056
东亚冬季气温除了季节平均外,其显著的季内起伏也对国民生活及经济活动有着深远影响。本文利用1959~2018年台站及再分析资料,使用S-EOF(Season-reliant Empirical Orthogonal Function)方法提取东亚冬季气温季内起伏的主要年际变化模态,其主要模态表现为前冬暖(冷)、后冬冷(暖),即为前、后冬反相,其方差贡献达到31.1%。这种前后冬反相的特征并非局地现象,在北半球大尺度均存在。环流场上它表现为欧亚遥相关型波列(Eurasian teleconnection, EU)从前冬12月的负位相(正位相)向后冬2月正位相(负位相)的转变,相伴随的是低层西伯利亚高压与阿留申低压的强度在前、后冬转折,高层副热带急流的变化也与之匹配。分析发现,欧亚遥相关型的季内转向可能与北大西洋涛动(North Atlantic oscillation, NAO)在前冬12月与后冬2月的转向有关,后者通过北大西洋热通量作用进而影响下游EU波列的转向。此外,宽窄厄尔尼诺—南方涛动(El Ni?o–Southern Oscillation, ENSO)事件也有一定贡献,当厄尔尼诺(El Ni?o)发生时,经向上更宽(窄)的海温异常利于前冬气温偏高(低)向后冬气温偏低(高)的转向;而当拉尼娜(La Ni?a)事件发生时,情况与厄尔尼诺年相反。  相似文献   

10.
We have performed experiments using an ocean model to study the sensitivity of tropical Pacific Ocean to variations in precipitation induced freshwater fluxes. Variations in these fluxes arise from natural causes on all time scales. In addition, estimates of these fluxes are uncertain because of differences among measurement techniques. The model used is a quasi-isopycnal model, covering the Pacific from 40?°S to 40?°N. The surface forcing is constructed from observed wind stress, evaporation, precipitation, and sea surface temperature (SST) fields. The heat flux is produced with an iterative technique so as to maintain the model close to the observed climatology, but with only a weak damping to that climatology. Climatological estimates of evaporation are combined with various estimates of precipitation to determine the net surface freshwater flux. Results indicate that increased freshwater input decreases salinity as expected, but increases temperatures in the upper ocean. Using the freshwater flux estimated from the Microwave Sounding Unit leads to a warming of up to 0.6?°C in the western Pacific over?a case with zero net freshwater flux. SST is sensitive to the discrepancies among different precipitation observations, with root-mean-square differences in SST on the order of 0.2–0.3?°C. The change in SST is more pronounced in the eastern Pacific, with difference of over 1?°C found among the various precipitation products. Interannual variation in precipitation during El Niño events leads to increased warming. During the winter of 1982–83, freshwater flux accounts for about 0.4?°C (approximately 10–15% of the maximum warming) of the surface warming in the central-eastern Pacific. Thus, the error of SST caused by the discrepancies in precipitation products is more than half of the SST anomaly produced by the interannual variability of observed precipitation. Further experiments, in which freshwater flux anomalies are imposed in the western, central, and eastern Pacific, show that the influence of net freshwater flux is also spatially dependent. The imposition of freshwater flux in the far western Pacific leads to a trapping of salinity anomalies to the surface layers near the equator. An identical flux imposed in the central Pacific produces deeper and off-equatorial salinity anomalies. The contrast between these two simulations is consistent with other simulations of the western Pacific barrier layer formation.  相似文献   

11.
This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.  相似文献   

12.
徐全倩  徐海明  马静 《大气科学》2018,42(6):1191-1207
采用高分辨率卫星和再分析资料,利用涡旋探测技术、滤波和合成分析等方法,对夏季北太平洋副热带地区中尺度海洋涡旋与大气的耦合关系进行了分析。结果表明:在日时间尺度上,海洋涡旋的海表温度(Sea SurfaceTemperature,简称SST)与海表风速之间不仅存在同位相的正相关关系,还存在反位相的负相关关系,即在涡旋这种中尺度上既存在海洋对大气的强迫,也存在大气对海洋的强迫。海表风速与SST同位相时,对暖(冷)涡来说,向上(下)的净热通量增强,云和降水增多(减少);其海水温度异常和海流旋度较强,暖(冷)涡较为深厚,一定程度上表明了海洋对大气的强迫。海表风速与SST反位相时,对暖(冷)涡而言,当其处在正(负)位势高度异常、中低层相对湿度较小(大)、气温较高(低)的大气配置下,海表风速较小(大);同时向下(上)净热通量增强,云和降水减少(增多);涡旋海水温度异常和海流旋度较弱,这种暖(冷)涡较为浅薄;表明晴空(阴雨)条件下有利于暖(冷)涡的维持,一定程度上反映了大气对海洋的强迫作用。  相似文献   

13.
The study compares the simulated poleward migration characteristics of boreal summer intraseasonal oscillations (BSISO) in a suite of coupled ocean?Catmospheric model sensitivity integrations. The sensitivity experiments are designed in such a manner to allow full coupling in specific ocean basins but forced by temporally varying monthly climatological sea surface temperature (SST) adopted from the fully coupled model control runs (ES10). While the local air?Csea interaction is suppressed in the tropical Indian Ocean and allowed in the other oceans in the ESdI run, it is suppressed in the tropical Pacific and allowed in the other oceans in the ESdP run. Our diagnostics show that the basic mean state in precipitation and easterly vertical shear as well as the BSISO properties remain unchanged due to either inclusion or exclusion of local air?Csea interaction. In the presence of realistic easterly vertical shear, the continuous emanation of Rossby waves from the equatorial convection is trapped over the monsoon region that enables the poleward propagation of BSISO anomalies in all the model sensitivity experiments. To explore the internal processes that maintain the tropospheric moisture anomalies ahead of BSISO precipitation anomalies, moisture and moist static energy budgets are performed. In all model experiments, advection of anomalous moisture by climatological winds anchors the moisture anomalies that in turn promote the northward migration of BSISO precipitation. While the results indicate the need for realistic simulation of all aspects of the basic state, our model results need to be taken with caution because in the ECHAM family of coupled models the internal variance at intraseasonal timescales is indeed very high, and therefore local air?Csea interactions may not play a pivotal role.  相似文献   

14.
利用月平均的HadISST海表温度、NCEP再分析资料、OAFlux海表面热通量及相关物理量资料、NCAR/NOAA云量场资料,分析了热带太平洋海表热通量的年际特征,并且进一步分析了传统El Ni?o和El Ni?o Modoki事件中湍流热通量的异常演变特征以及影响因子。在热带太平洋上,净热通量的年际变化最大振幅出现在赤道太平洋上,且主要取决于潜热通量和短波辐射通量的变化。本文还利用两类ENSO事件旺盛期海温指数对不同时期海面热通量场的偏回归分析,考察了热带太平洋海表面热通量与两类ENSO事件中海温的联系。两类海温指数对各时期热带太平洋净热通量的回归均表现为赤道太平洋上存在显著的负异常,在Ni?o3指数偏回归下的负异常范围和强度都较El Ni?o Modoki指数回归的要大,且更偏于赤道东太平洋,而旺盛期海温对同期赤道东太平洋上湍流热通量的影响最大。  相似文献   

15.
Warm and cold phases of El Nino–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features of anomalous sea surface temperature (SST) and atmospheric circulation over the tropical Western Pacific (WP) in El Nino and La Nina mature-to-decay phases are analyzed. It is found that the interannual standard deviations of outgoing longwave radiation and 850 hPa zonal wind anomalies over the equatorial WP during El Nino (La Nina) mature-to-decay phases are much stronger (weaker) than the intraseasonal standard deviations. It seems that the weakened (enhanced) intraseasonal oscillation during El Nino (La Nina) tends to favor a stronger (weaker) interannual variation of the atmospheric wind, resulting in asymmetric equatorial WP zonal wind anomalies in El Nino and La Nina decay phases. Numerical experiments demonstrate that such asymmetric zonal wind stress anomalies during El Nino and La Nina decay phases can lead to an asymmetric decay speed of SST anomalies in the central-eastern equatorial Pacific through stimulating di erent equatorial Kelvin waves. The largest negative anomaly over the Nino3 region caused by the zonal wind stress anomalies during El Nino can be threefold greater than the positive Nino3 SSTA anomalies during La Nina, indicating that the stronger zonal wind stress anomalies over the equatorial WP play an important role in the faster decay speed during El Nino.  相似文献   

16.
Arctic sea ice concentration (ASIC) in boreal autumn exhibits prominent interannual variability since 1979. The physical mechanism responsible for the year-to-year variation of ASIC is investigated through observational data analyses and idealized numerical modeling. It is found that the ASIC interannual variability is closely associated with the anomalous meridional circulations over the Northern Hemisphere, which is further linked with the tropical sea surface temperature (SST) forcing. A tropics-wide SST cooling anomaly leads to an enhanced meridional SST gradient to the north of the equator in boreal summer, generating strengthened and northward shifting Hadley circulation over the Northern Hemisphere. Consequently, the meridional circulations are enhanced and pushed poleward, leading to an enhanced descending motion at the North Pole, surrounded by an ascending motion anomaly; the surface outflow turns into easterly anomalies, opposing the mean-state winds. As a result, positive cloudiness and weakened surface wind speed emerge, which reduce ASIC through changes in the surface latent heat flux and the downward longwave radiation.  相似文献   

17.
Satellite observations reveal a much stronger intraseasonal sea surface temperature (SST) variability in the southern Indian Ocean along 5-10oS in boreal winter than in boreal summer. The cause of this seasonal dependence is studied using a 2?-layer ocean model forced by ERA-40 reanalysis products during 1987-2001. The simulated winter-summer asymmetry of the SST variability is consistent with the observed. A mixed-layer heat budget is analyzed. Mean surface westerlies along the ITCZ (5-10oS) in December-January-February (DJF) leads to an increased (decreased) evaporation in the westerly (easterly) phase of the intraseasonal oscillation (ISO), during which convection is also enhanced (suppressed). Thus the anomalous shortwave radiation, latent heat flux and entrainment effects are all in phase and produce strong SST signals. During June-July-August (JJA), mean easterlies prevail south of the equator. Anomalies of the shortwave radiation tend to be out of phase to those of the latent heat flux and ocean entrainment. This mutual cancellation leads to a weak SST response in boreal summer. The resultant SST tendency is further diminished by a deeper mixed layer in JJA compared to that in DJF. The strong intraseasonal SST response in boreal winter may exert a delayed feedback to the subsequent opposite phase of ISO, implying a two-way air-sea interaction scenario on the intraseasonal timescale. Citation: Li, T., F. Tam, X. Fu, et al., 2008: Causes of the intraseasonal SST variability in the tropical Indian ocean, Atmos. Oceanic Sci. Lett., 1, 18-23  相似文献   

18.
Numerical experiments are performed to simulate the response of the atmospheric circulation and pre-cipitation over East China in June to the sea surface temperature(SST)anomalies over the tropical eastern Pacific(TEP)from preceding September to June by using an atmospheric general circulation model (AGCM).We constructed composite positive/negative SST anomalies(P-SSTAs/N-SSTAs)based on the observational SST anomalies over the TEP from September 1997 to June 1998.The results show that:(1) the response of the precipitation in the Yangtze River basin and its southern area(YRBS)to El Nino with different durations varies with the maximum amplitude of the precipitation anomalies appearing when the imposed duration is from November to next June,and the minimum appearing when the SST anomalies is only imposed in June.The anomalies of the precipitation are reduced when the duration of the forcing SST anomalies over the TEP is shortened and the positive SST anomalies in the preceding autumn tend to cause significantly more rainfall in the YRBS.This is in agreement with previous diagnostic analysis results.(2)The simulated precipitation anomalies over the YRBS are always obviously positive under strong or weak positive SST anomalies over the TEP.The intensity of the precipitation anomalies increases with increasing intensity of the SST anomalies in the experiments.The simulation results are consistent with the observations during the warm SST events,suggesting reasonable modeling results.(3)When negative SST anomalies in the TEP are put into the model,the results are different from those of the diagnostic analysis of La Nina events.Negative precipitation anomalies in YRBS could be reproduced only when the negative SST anomalies are strong enough.  相似文献   

19.
In this study, the anomalous characteristics of observed large-scale synoptic fields in the extreme East Asian summer monsoon (EASM) years are analyzed, and the impact of the local sea surface temperature (SST) anomaly over the western North Pacific (WNP) on the extreme EASM is investigated through sensitivity experiments of 28?years EASM simulations to the local SST over the WNP. The observation analysis reveals that the extreme EASM is influenced more by anomalous large-scale atmospheric features such as monsoon circulations and the western North Pacific subtropical high than the local SST anomaly over the WNP. However, the results of the sensitivity experiments show that the local SST anomaly has an implicit impact on the extreme EASM. The patterns of differences in precipitation between the experiment forced by observed SST in each year and the experiment forced by climatological SST over the WNP are opposite to anomaly patterns of observed precipitation in the extreme EASM years. This is because the SST anomaly over the WNP plays a role in reducing precipitation anomaly by changing surface latent heat flux and monsoon circulations. In particular, the local SST anomaly over the WNP decreases anomalies of large-scale circulations, i.e., the local Hadley and the Walker circulations. Thus, the local SST anomaly over the WNP plays a role in decreasing the interannual variability of the EASM.  相似文献   

20.
The strongest large-scale intraseasonal (30–110 day) sea surface temperature (SST) variations in austral summer in the tropics are found in the eastern Indian Ocean between Australia and Indonesia (North-Western Australian Basin, or NWAB). TMI and Argo observations indicate that the temperature signal (std. ~0.4 °C) is most prominent within the top 20 m. This temperature signal appears as a standing oscillation with a 40–50 day timescale within the NWAB, associated with ~40 Wm?2 net heat fluxes (primarily shortwave and latent) and ~0.02 Nm?2 wind stress perturbations. This signal is largely related to the Madden-Julian Oscillation. A slab ocean model with climatological observed mixed-layer depth and an ocean general circulation model both accurately reproduce the observed intraseasonal SST oscillations in the NWAB. Both indicate that most of the intraseasonal SST variations in the NWAB in austral winter are related to surface heat flux forcing, and that intraseasonal SST variations are largest in austral summer because the mixed-layer is shallow (~20 m) and thus more responsive during that season. The general circulation model indicates that entrainment cooling plays little role in intraseasonal SST variations. The larger intraseasonal SST variations in the NWAB as compared to the widely-studied thermocline-ridge of the Indian Ocean region is explained by the larger convective and air-sea heat flux perturbations in the NWAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号