首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   2篇
  国内免费   5篇
测绘学   3篇
大气科学   25篇
地球物理   16篇
地质学   54篇
海洋学   5篇
天文学   40篇
综合类   1篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2020年   6篇
  2019年   1篇
  2018年   9篇
  2017年   15篇
  2016年   8篇
  2015年   3篇
  2014年   17篇
  2013年   12篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1985年   1篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
1.
We have analysed the broad-bandUBV colours and the intermediate banduvby colours of Persei, Pleiades, and the Scorpio-Centaurus association for rotation effects. An attempt was made to see if we can discriminate normal single stars from that of binary and peculiar stars after taking the observed rotation effects into account. It is found that the spread in the observed colours does not allow in general such a discrimination except that the objects with large reddening are double-lined binaries, peculiar stars or emission-lined objects. The few normal stars in these three clusters with such large reddening are listed as they are likely to belong to one of the above classes.On leave of absence from Assumption College, Changanacherry, Kerala.  相似文献   
2.
Hydrocyclones are widely used in the mining and chemical industries. An attempt has been made in this study, to develop a CFD (computational fluid dynamics) model, which is capable of predicting the flow patterns inside the hydrocyclone, including accurate prediction of flow split as well as the size of the air-core. The flow velocities and air-core diameters are predicted by DRSM (differential Reynolds stress model) and LES (large eddy simulations) models were compared to experimental results. The predicted water splits and air-core diameter with LES and RSM turbulence models along with VOF (volume of fluid) model for the air phase, through the outlets for various inlet pressures were also analyzed. The LES turbulence model led to an improved turbulence field prediction and thereby to more accurate prediction of pressure and velocity fields. This improvement was distinctive for the axial profile of pressure, indicating that air-core development is principally a transport effect rather than a pressure effect.  相似文献   
3.
The pressure, temperature and composition of ore fluids that resulted in gold deposition in the Archean, greenstone-hosted Hutti deposit have been studied using fluid inclusions and the compositions of arsenopyrite and chlorite. Five types of fluids have been identified in fluid inclusions in quartz veins associated with mineralization. They are (1) monophase CO 2-rich fluid; (2) low-salinity (0 to 14 wt% NaCl equivalent) and high-salinity (16 to 23 wt% NaCl equiv.) aqueous fluids; (3) high-salinity (28 to 40 wt% NaCl equiv.), polyphase aqueous fluids; (4) CO 2–H 2O–NaCl fluids of low salinity (0–8 wt% NaCl equiv.); and (5) a few carbonic inclusions with halite±nahcolite. The diversity of entrapped fluid composition is explained in terms of changes in fluid pressure and temperature which affect a more or less uniform supply of primary low-salinity CO 2–H 2O–NaCl fluid to the shear zone. Geothermobarometric studies indicate that during mineralization temperature ranged between 360 and 240 °C, and fluid pressure between 3,600 and 1,600 bar. The data are interpreted in terms of the cyclic fault-valve mechanism for active shear zones. Deposition of gold and sulfides has been studied on the basis of constraints from the composition of wall-rock chlorite, ore-mineral assemblages, and textural features. Tubular channels, 20 to 100 µm wide and up to 500 µm long that arise from fractures and C-planes in sheared quartz veins are reported for the first time. The channels have pyrrhotite, arsenopyrite, pyrite and gold at their distal ends, with calcite filling up the remaining part. These channels form in response to increases in T and P, by dissolution of quartz grains, guided by dislocations in them. At the PT conditions of interest, gold and sulfide deposition takes place in the shears and fractures of quartz veins from CO 2–H 2O–NaCl ore fluid of low salinity and pH due to changes in phase compositions that occur during the process of shear failure of the enclosing rocks. In the wall rock where pH is buffered, gold deposition takes place from the predominant Au(HS) 2 - species with progressive sulfide deposition and decrease in SS, from 0.01 to 0.001 mol/kg as T falls from 360 to 240 °C.  相似文献   
4.
Summary The rate of oceanic heat storage of the upper 200m of the Arabian Sea is explained in terms of net air-sea heat flux (Q F), heat change due to horizontal divergence and vertical motion (Q V) and heat change due to lateral advection (Q A). The analysis revealed that the heat storage of the Arabian Sea is mainly controlled byQ V while the effect ofQ A is much larger than expected. Parameterisation of summer cooling revealed that the depletion of energy from the mixed layer is mainly due to upwelling and horizontal advection though large amount of heat is accumulated due to net air-sea heat flux. The annual heat balance of the upper 200m of the Arabian Sea suggested large heat gain by air-sea exchange processes. About two third of this heat gain is compensated by horizontal advection and one third by vertical advection.With 4 Figures  相似文献   
5.
6.
7.
Asia is key to a richer understanding of many important lithospheric processes such as crustal growth,continental evolution and orogenesis. But to properly decipher the secrets Asia holds, a first-order tectonic context is needed. This presents a challenge, however, because a great variety of alternative and often contradictory tectonic models of Asia have flourished. This plethora of models has in part arisen from efforts to explain limited observations(in space, time or discipline) without regard for the broader assemblage of established constraints. The way forward, then, is to endeavor to construct paleogeographic models that fully incorporate the diverse constraints available, namely from quantitative paleomagnetic data, the plentiful record of geologic and paleobiologic observations, and the principles of plate tectonics. This paper presents a preliminary attempt at such a synthesis concerning the early Paleozoic tectonic history of Asia. A review of salient geologic observations and paleomagnetic data from the various continental blocks and terranes of Asia is followed by the presentation of a new, full-plate tectonic model of the region from middle Cambrian to end-Silurian time(500-420 Ma). Although this work may serve as a reference point, the model itself can only be considred provisional and ideally it will evolve with time. Accordingly, all the model details are released so that they may be used to test and improve the framework as new discoveries unfold.  相似文献   
8.
The Northern Indian Ocean (NIO) is unique due to seasonal reversal of wind patterns, the formation of vortices and eddies which make satellite observations arduous. The veracity of sea surface wind (SSW) and sea surface temperature (SST) products of sun-synchronous AMSR-2 satellite are compared with high-temporal moored buoy observations over the NIO. The two year-long (2013–2014) comparisons reveal that the root-mean-square-error (RMSE) of AMSR-2 SST and SSW is \(<0.4{^{\circ }}\hbox {C}\) and \(<1.5\hbox { ms}^{-1}\), respectively, which are within the error range prescribed for the AMSR-2 satellite (\(\pm 0.8{^{\circ }}\hbox {C}\), \(\pm 1.5\hbox { ms}^{-1})\). The SST–wind relation is analyzed using data both from the buoy and satellite. As a result, the low-SST is associated with low-wind condition (positive slope) in the northern part of the Bay of Bengal (BoB), while low SST values are associated with high wind conditions (negative slope) over the southern BoB. Moreover, the AMSR-2 displayed larger slope for SST–wind relation and could be mainly due to overestimation of SST and underestimation of wind as compared to the buoy. The AMSR-2 SSW exhibited higher error during post-monsoon followed by monsoon season and could be attributed to the high wind conditions associated with intense oceanic vortices. The study suggests that the AMSR-2 products are reliable and can be used in tropical air–sea interactions, meso-scale features, and weather and climate studies.  相似文献   
9.

The Indonesian throughflow (ITF) transports a significant amount of warm freshwater from the Pacific to the Indian Ocean, making it critical to the global climate system. This study examines decadal ITF variations using ocean reanalysis data as well as climate model simulations from the Coupled Model Inter-comparison Project Phase 5 (CMIP5). While the observed annual cycle of ITF transport is known to be correlated with the annual cycle of sea surface height (SSH) difference between the Pacific and Indian Oceans, ocean reanalysis data (1959–2015) show that the Pacific Ocean SSH variability controls more than 85% of ITF variation on decadal timescales. In contrast, the Indian Ocean SSH variability contributes less than 15%. While those observed contributions are mostly reproduced in the CMIP5 historical simulations, an analysis of future climate projections shows a 25–30% increase in the Indian Ocean SSH variability to decadal ITF variations and a corresponding decrease in the Pacific contribution. These projected changes in the Indian Ocean SSH variability are associated with a 23% increase in the amplitudes of negative zonal wind stress anomalies over the equatorial Indian Ocean, along with a 12º eastward shift in the center of action in these anomalies. This combined effect of the increased amplitude and eastward shift in the zonal wind stress increases the SSHA variance over the Indian Ocean, increasing its contribution to the ITF variation. The decadal ITF changes discussed in this study will be crucial in understanding the future global climate variability, strongly coupled to Indo-Pacific interactions.

  相似文献   
10.
Mathew Roxy 《Climate Dynamics》2014,43(5-6):1159-1169
Over the tropical oceans, higher sea surface temperatures (SST, above 26 °C) in summer are generally accompanied by increased precipitation. However, it has been argued for the last three decades that, any monotonic increase in precipitation with respect to SST is limited to an upper threshold of 28–29.5 °C, and beyond this, the relationship fails. Based on this assessment it has often been presumed that, since the mean SSTs over the Asian monsoon basins (Indian Ocean and north-west Pacific) are mostly above the threshold, SST does not play an active role on the summer monsoon variability. It also implies that increasing SSTs due to a changing climate need not result in increasing monsoon precipitation. The current study shows that the response of precipitation to SST has a time lag, that too with a spatial variability over the monsoon basins. Taking this lag into account, the results here show that enhanced convection occurs even up to the SST maxima of 31 °C averaged over these basins, challenging any claim of an upper threshold for the SST-convection variability. The study provides us with a novel method to quantify the SST-precipitation relationship. The rate of increase is similar across the basins, with precipitation increasing at ~2 mm day?1 for an increase of 1 °C in SST. This means that even the high SSTs over the monsoon basins do play an active role on the monsoon variability, challenging previous assumptions. Since the response of precipitation to SST variability is visible in a few days, it would also imply that including realistic ocean–atmosphere coupling is crucial even for short term monsoon weather forecasts. Though recent studies suggest a weakening of the monsoon circulation over the last few decades, results here suggest an increased precipitation over the tropical monsoon regions, in a global warming environment with increased SSTs. Thus the signature of SST is found to be significant for the Asian summer monsoon, in a quantifiable manner, seamlessly through all the timescales—from short-term intraseasonal to long-term climate scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号