首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用2004-2006年FY-2C卫星云图资料,统计了云顶亮温与焦作市降水量的关系;并根据相邻两张云图中云顶低亮温中心移动的距离和时间,确定云的移速。在此基础上,建立了层状云和积状云降水估算方程。经对2005-2006年估算结果统计,层状云有无降水预报准确率为80%;对4次积状云降水的估算结果为1次漏报、1次降水量级误差较大、2次预报正确,准确率达50%。  相似文献   

2.
基于卫星和雷达资料估测滇中地区降水量方法研究   总被引:1,自引:1,他引:0  
陈小华  段旭 《气象》2013,39(2):203-209
选用2008、2009和2010年5-10月的云顶亮温、云顶亮温梯度、水汽云图、总云量和云分类等云图资料,雷达基本反射率资料及自动站1h降水量资料,采用BP神经网络建立预报模型、传统Z-I关系及云分类Z-I关系,对距昆明雷达站大于20 km、小于150 km区域里且2008年已建有自动站的18个测站进行3h降水估测研究.通过研究,得到使用BP神经网络建立预报模型估测降水,在与实测降水的误差方面,比使用传统Z-I关系及云分类Z-I关系估测降水略有减小.本研究也是对综合利用卫星和雷达资料估测降水进行尝试.  相似文献   

3.
浙江省降水云系红外云图特征及其与降水量的关系   总被引:2,自引:0,他引:2  
用2000~2003年GMS红外云图资料,统计分析了影响浙江省降水系统的红外云图特征及其与地面1 h降水量的关系。结果表明:降水云团的云顶亮温、1 h云顶亮温差、云顶亮温梯度和云团移动速度与地面降水强度的对应关系是非线性的,并且随季节的变化它们的关系又有明显变化;随着云顶亮温的降低,1 h降水量降水强度逐渐增大,出现强降水的机率也明显增多;浙江省内易出现2.0 mm/h(中雨)7、.0 mm/h(大雨)、15.0 mm/h(暴雨)强降水的云顶亮温指标分别为-30℃、-36℃、-41℃。  相似文献   

4.
中国东部地区卫星估计降水系统及其应用   总被引:1,自引:0,他引:1  
杨引明  姚祖庆 《气象科学》2005,25(2):149-157
基于两年的地面观测和GMS-5静止卫星云图等资料样本库,采用多元回归方法建立了中国东部地区六小时降水量分级估计业务系统。在大片层状云、孤立对流云等不同性质的降水条件下对该系统进行业务试运行,结果表明:1)使用多通道卫星云图资料,特别是红外和水汽通道亮温差、红外亮温的时间变率等云图衍生资料,可以有效的提高卫星定量估计降水准确率。2)由逐日实时资料库建立的回归估计方程,每6h更新一次,大大地改善了大片厚卷云和特殊地形引起的空报。  相似文献   

5.
GMS-5四通道云图的自动分类及其在定量降水估算中的应用   总被引:18,自引:2,他引:16  
王立志  李俊  周凤仙 《大气科学》1998,22(3):371-378
根据日本地球静止气象卫星(GMS-5)云图的新特点,运用动态分类方法对GMS-5四通道卫星云图进行分类,得到各种云类及地表。并由分类结果,根据一维云模式得到的对流云对流核心云顶温度与降水之间的关系,对层云和对流云做定量降水估算。并用1995年8月31日的云图资料进行对流云和层云的降水估计试验,将估算出的降水率和降水面积与地面1 h的观测降水资料进行比较,结果表明:假如设置40%为降水的允许误差,那么降水估计的准确覆盖率将达到70%。能在业务应用中推广,并且该方法可以应用到即将发射的风云2号气象卫星资料处理  相似文献   

6.
根据 G M S- 5 静止气象卫星数字化卫星云图的灰度分布,计算灰度共生矩阵,抽取云的纹理特征量,组成云自动分类方程,进而滤去地表和非降水云信息,实现云的自动分类,然后针对黄河流域不同类型云建立云顶温度与地面实测降水关系曲线,并选取订正因子,建立地面降水估算方程进行降水估算。使用结果表明,该方法对黄河流域汛期降水估算效果较好。  相似文献   

7.
FY2C/D卫星反演云特性参数与地面雨滴谱降水观测初步分析   总被引:2,自引:1,他引:1  
针对2008年4月11-12日一次北方层状云降水过程,将FY2C/D静止卫星反演的云参数和地面同时段的雨滴谱仪的观测资料进行联合分析,发现反演得到的一些特征云参数对地面降水有一定的指示意义:一般降水发生前,云系发展,云顶抬升,云顶温度和云黑体亮温都降低,云光学厚度增大,云参数先于地面降水变化,两者大概相差2小时。其中,云光学厚度与地面降水量和降水粒子数关系密切,其相关性比云顶高度、云顶温度和云黑体亮温的相关性都好;一般地面降水强,光学厚度一定大,若云层光学厚度较小,即便云顶发展得很高,地面几乎无降水或降水较小,但云光学厚度大时,地面降水强度并不一定都大,可能降水粒子数浓度大,地面多降毛毛雨。  相似文献   

8.
本文介绍了卫星云图估计降水的几种方法,并通过对卫星云图数据的处理得到实时亮温场,建立亮温场与降水量之间的相关方程,进行降水估算。  相似文献   

9.
胡波  杜惠良  滕卫平  肖云 《气象》2006,32(1):74-77
以热带气旋降水云区的云顶亮温和1小时云顶亮温差为BP人工神经网络的输入层,以实况1小时的雨量为人工神经网络的输出层,建立了4类人工神经网络预报模型,分别为点模型、线模型、小面模型和大面模型。通过大量的人工神经网络试报表明小面模型能较好地抓住热带气旋红外云图中的主要降水影响因子(移向、移速、云顶亮温、发展率、云顶亮温梯度),具有“过拟合”现象低、泛化性能高、预报能力强等特点。  相似文献   

10.
GMS-5四通道云图的自动分类及其在定量降水估算中的应用   总被引:2,自引:0,他引:2  
王立志  李俊  周凤仙 《大气科学》1998,22(3):371-378
根据日本地球静止气象卫星(GMS-5)云图的新特点,运用动态分类方法对GMS-5四通道卫星云图进行分类,得到各种云类及地表。并由分类结果,根据一维云模式得到的对流云对流核心云顶温度与降水之间的关系,对层云和对流云做定量降水估算。并用1995年8月31日的云图资料进行对流云和层云的降水估计试验,将估算出的降水率和降水面积与地面1h的观测降水资料进行比较,结果表明:假如设置40%为降水的允许误差,那么  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

20.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号