首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary The problem of along-stream ageostrophic frontogenesis is studied by employing a numerical model at meso-alpha and meso-beta scales in simulations of the downstream circulations over the Front Range of the Rocky Mountains. Three-dimensional real data simulations at these two scales of motion are used to diagnose the transition from semigeostrophic cross-stream frontogenesis accompanying a propagating baroclinic upper-level jet streak to midtropospheric along-stream ageostrophic frontogenesis. This along-stream ageostrophic frontogenesis results from the perturbation of the jet streak by the Rocky Mountain range. The case study represents an example of internal wave dynamics which are forced by the drag of the Rocky Mountains on a strong jet streak in the presence of a low-level inversion.The simulation results indicate that, unlike semi-geostrophic frontogenesis, a front (which is alligned perpendicular to the axis of the jet stream) may form when significant adiabatic heating occurs within a stratified shear flow over horizontal length scales shorter than the Rossby radius of deformation. The mechanism responsible for the frontogenesis is the growth of the divergent along-stream wind velocity component which becomes coupled to the front's along-stream pressure gradient force. This nonlinear interaction produces hydrostatic mesoscale frontogenesis as follows: 1) vertical wind shear in the along-stream plane strengthens resulting in the increasingly nonuniform vertical variation of horizontal temperature advection as the ageostrophic wind component grows in magnitude downstream of the meso-scale terrain-induced adiabatic heating, 2) increasing along-stream differential vertical motions (i.e., along-stream thermally indirect circulation with warm air sinking to the west and cold air rising to the east) tilt the vertical gradient of isentropes into the horizontal as the vertical temperature gradient increases due to the previous process in proximity to horizontal gradients in the along-stream component of the ageostrophic wind, 3) as tilting motions act to increase the along-stream horizontal temperature gradient, the along-stream confluence acts to nonuniformly increase the along-stream frontal temperature gradient which increases the along-stream pressure gradient force resulting in further accelerations, ageostrophy, and frontal steepening as part of a scale contraction process.The evolution of the aforementioned processes results in the three-dimensional hydrostatic frontogenesis accompanying the overturning of isentropic surfaces. These adjustments act to turn air parcels to the right of the southwesterly geostrophic wind vector at successively lower atmospheric levels as the scale contraction continues. This simulated along-stream front is verified from diagnostic analysis of the profiler-derived temperature and wind fields.With 17 Figures  相似文献   

2.
Summary The characteristics of a strong European summertime cold front are investigated using the wealth of synoptic observations, which were analysed by the dynamical initialization scheme of an operational meso-scale model. The study was also extended to forecasted fields.Cross-sections perpendicular to the front, covering a dormain of more than 2000 km in the horizontal and 10 km in the vertical direction, bring out the basic parameters (as potential temperature and the components of the geostrophic and ageostrophic wind vectors), the ageostrophic crossfrontal circulation and all cross-frontal frontogenesis terms.None of the many frontogenesis terms plays a dominant role, there is a concerted action of geostrophic and ageostrophic deformation and shear, of tilting and diabatic sources in producing a rather complex structure of total frontogenesis. The cross-sectional fields of all presented terms strongly underline the fact, that a front is not a line of discontinuity but a rather wide three-dimensional field phenomenon.With 12 Figures  相似文献   

3.
A 3D mesoscale model is applied in a marine cold front case in order to investigate the impact oflatent heating on the structure of cold fronts.Results of the moist and dry simulations are comparedto stress the effects of moist processes.It is found that both the temperature gradient and the cyclonicvorticity across the frontal zone considerably increase due to the latent heating,especially in the lowertroposphere.A thermally direct cross-front ageostrophic circulation.forced by frontogenesis,is foundbetter developed and organized in the moist case than in the dry case.This cross-front directageostrophic circulation,particularly its ascending branch,is considerably enhanced by latent heatingdue to increased frontogenetical forcing and reduced effective static stability in the rising motion regionwhere condensation occurs.One important feature in most observed cold fronts is the presence of anintense rising cell just above their leading edge.This intense rising cell is well simulated in the moistcase but is less clear and much weaker in the dry case,indicating the important contribution by the la-tent heat release to the formation of this intense updraft above the surface cold front.  相似文献   

4.
通过对1998年6月29日北京地区发生在天气尺度脊中的强对流大暴雨过程分析, 得出该过程是由中层的高压脊和低层的辐合系统、近地面的冷空气之间的相互作用形成了具有聚能机制的中低空经向环流圈, 维持了暴雨区中低空的上升运动, 形成了近地面的动力锋生, 使中低层的潜在不稳定加剧.而对流层高层短波扰动的正涡度平流通过非地转平衡过程, 引发中高层产生的上升运动, 触发了潜在不稳定的释放.该短波扰动与风场的波动不相匹配, 其位相传播特征与重力波相似.  相似文献   

5.
Ekman边界层动力学的理论研究   总被引:5,自引:0,他引:5  
谈哲敏  方娟  伍荣生 《气象学报》2005,63(5):543-555
大气边界层及其与自由大气之间的相互作用具有明显的非线性特征,而这些特征是经典Ekman理论所不能描述的,因此,发展中等复杂程度(介于完全模式与经典Ekman模型之间)的大气边界层动力学模式,简称中间模式,对人们从理论上认识大气边界层动力学过程的非线性特征具有重要意义。本文对目前最具代表性的几个中间边界层模型:地转动量近似边界层模型、Ekman动量近似边界层模型以及弱非线性边界层模型进行了总结和分析,阐述了Ekman层主要动力学特征。通过分析上述各模型的理论框架,揭示了各模型的物理意义及其在描述Ekman边界层基本动力特征上的优点和局限性,并指出尽管在细节定量描述上有差异,但各中间模型对Ekman层动力学特征的定性描述具有很好的一致性。对于这些Ekman边界层近似理论模型的进一步应用问题,主要回顾和总结了利用上述模型探讨地形边界层结构、大气锋生过程、低层锋面结构和环流以及边界层日变化、低空急流形成等动力学问题的研究,并对这些研究所揭示的Ekman层动力学特征及其对自由大气低层运动的影响进行了分析,结果表明,这些Ekman边界层近似模型可以较好地揭示大气边界层动力学特征,在大气边界层动力学及其与自由大气相互作用的研究上具有重要价值。另外,还对目前Ekman边界层理论研究中存在的问题进行了一些分析,提出了有待进一步研究的科学问题。  相似文献   

6.
大尺度凝结加热与中尺度位温扰动对冷锋锋生的作用   总被引:1,自引:0,他引:1  
文中导得简化的包括大尺度凝结潜热的半地转锋生模式,利用该模式讨论了大尺度凝结加热和中尺度位温扰动对冷锋锋生的影响,给出了锋生过程中各物理量的演变图。计算结果表明,大尺度凝结加热对冷锋锋生具有加强作用,增大锋生率,增大上升运动速度,缩小上升运动区的范围,使之更具有中尺度系统特征,使非地转越锋环流增强并发生倾斜,凝结加热和中尺度位温扰动的结合是锋前暖区多重雨带形成的可能机制之一。  相似文献   

7.
Frontal substructures within the planetary boundary layer   总被引:2,自引:0,他引:2  
A two-dimensional mesoscale model, extended by a TKE closure for the subgrid-scale terms and coupled with a soil model, is used to investigate the role of the Planetary Boundary Layer (PBL) for the development and the substructures of two different types of cold fronts. The effects of turbulent friction, large-scale (geostrophic) forcing and the diurnal variation of the terms of the surface energy balance (SEB) equation on the frontal development are studied by 10 different model runs. The ageostrophic cross-frontal circulation in the lowest two kilometres of a cold front results from friction as well as from large-scale forcing. The first one dominates the PBL processes and causes a special boundary-layer structure, which becomes apparent through the existence of seven characteristic zones defined for the x-z cross sections of potential temperature. The arrangement of these characteristic zones depends on the sense of rotation of the frictionally induced part of the ageostrophic circulation and hence on the direction of the along-front jet within the boundary layer. The daytime increase of the terms of the SEB equation for a midlatitude midsummer case leads to a strong enhancement of the frictionally induced cross-frontal circulation. The arrangement of the seven characteristic zones, however, is approximately conserved.  相似文献   

8.
2010年4月27日莱州湾大风过程诊断分析   总被引:4,自引:1,他引:3  
尹尽勇  曹越男  赵伟 《气象》2011,37(7):897-905
利用NCEP资料对2010年4月27日莱州湾大风过程进行了诊断分析。结果表明,气旋的爆发性发展导致气旋冷锋后部的锋生加强引发的变压梯度加大是造成此次莱州湾地区大风过程的直接原因。通过大尺度环境场分析,以及温度平流、涡度平流、高空急流、高层位涡异常的诊断分析,认为强的大气斜压性和其所伴随的冷、暖平流使高空槽发展;高低层涡度平流差异是地面气旋发展初期的主要因子;高空槽前急流轴向极一侧的非地转分量所引起的辐散有助于气旋发展;高层高值位涡下传激发了气旋性环流,造成地面气旋爆发性发展。  相似文献   

9.
对STORM-FESTIOP17一次冬季锋面暴风雪天气过程的斜压边界层结构演变及特征进行了分析。发现:暖湿空气沿锋面抬升凝结成云,产生降水过程中释放的大量潜热显著增加锋两侧的水平温度差异,产生锋生。与锋生相伴,在锋前产生低空急流和高空急流。当锋生至最强时,锋两侧温差可达20K,锋前低空急流开始减弱,锋后低空急流增强,锋后冷平流开始主导锋两侧的环流系统。该冷平流削弱锋两侧的温度水平梯度,产生锋消作用。对这次锋面斜压对流边界层的湍流特征分析表明:在边界层之上切应力wv明显增大;湍能收支分析表明在边界层之上的风切变产生项很强,即大尺度天气系统有利于斜压对流边界层的发展,边界层内各量充分混合。这次冬季锋面暴风雪天气过程,冷锋前的低空南风急流从墨西哥湾携带来的充足水汽及锋区边界层大气的强斜压性是其产生的关键因子:冷锋过后,大尺度高空急流的作用更有利于对流边界层的充分发展。  相似文献   

10.
Helicity Dynamics of Atmospheric Flow   总被引:17,自引:0,他引:17  
Helicity is an important physical variable which is similar to the energy and enstrophy in three-dimensional fluid. It can be used to describe the motion in the direction of fluid rotation and also can be regarded as a new physi-cal variable in turbulence theory. In recent years, it has been used in atmospheric dynamics. In this paper, helicity of atmospheric flow, especially helicity in the boundary layer and in the vicinity of front was discussed. These results show that helicity is usually positive in the boundary layer due to the effect of friction. The helicity of boundary layer flow is larger in anticyclone than that in cyclone, resulting from the different wind structures of boundary layers in an-ticyclone and cyclone under the geostrophic momentum approximation. It is possible that the helicity is negative at certain height in the baroclinic boundary layer. The influences of nonlinearity and baroclinity on the helicity are im-portant. The so called “Cloud Street” in the boundary layer is related to the dynamics of helicity. Helicity in the at-mosphere can be expressed as the temperature advection under some conditions, so helicity would be allowed to des-cribe the frontogenesis and development of frontal structure. The amplitude of helicity increases with time in the frontogenesis. A large gradient of helicity is generated in the region located to the northeast of the surface low and in which the front is formed. In warm frontal region, as well as behind the trough of temperature, the helicity is positive, while the helicity is negative in cold frontal sector and in the ahead ridge of temperature. The largest helicity occurs in the boundary.  相似文献   

11.
The mechanisms behind the seasonal deepening of the mixed layer(ML) in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012. The region with a deep ML(more than 175 m) was found in the region of(22?–30?S, 105?–90?W), reaching its maximum depth(~200 m) near(27?–28?S, 100?W) in September. The relative importance of horizontal density advection in determining the maximum ML location is discussed qualitatively. Downward Ekman pumping is key to determining the eastern boundary of the deep ML region. In addition, zonal density advection by the subtropical countercurrent(STCC) in the subtropical Southwest Pacific determines its western boundary, by carrying lighter water to strengthen the stratification and form a "shallow tongue" of ML depth to block the westward extension of the deep ML in the STCC region. The temperature advection by the STCC is the main source for large heat loss from the subtropical Southwest Pacific. Finally, the combined effect of net surface heat flux and meridional density advection by the subtropical gyre determines the northern and southern boundaries of the deep ML region: the ocean heat loss at the surface gradually increases from 22?S to 35?S, while the meridional density advection by the subtropical gyre strengthens the stratification south of the maximum ML depth and weakens the stratification to the north. The freshwater flux contribution to deepening the ML during austral winter is limited. The results are useful for understanding the role of ocean dynamics in the ML formation in the subtropical Southeast Pacific.  相似文献   

12.
Presented is a review of quantitative characteristics of atmospheric frontogenesis that describe it as the process of variations of the vector of the horizontal temperature gradient (both in value and in direction) in an individual particle. The frontogenesis that strives for recovering the thermal wind balance disturbed in the case of inhomogeneous advection, generates vertical circulation which is both thermally direct (warm air ascends relative to cold air) and thermally opposite (upward motions in the cold air). Given are the expressions for computing frontogenesis using the data on temperature, pressure, and wind. Used is the resolution of the frontogenetic vector function into components along the isoline of potential temperature both on and across the constant-pressure surface. The first component describes the change in the temperature gradient vector due to the rotation of isotherms (rotational frontogenesis), and the second component, the variations of the absolute value of the gradient (scalar frontogenesis). Quantitative characteristics of frontogenesis are efficient diagnostic parameters both for understanding weather processes and weather forecast specification and for the verification and enhancement of numerical models.  相似文献   

13.
Extensive eddy-correlation datasets are analyzed to examine the influence of nonstationarity of the mean flow on the flux–gradient relationship near the surface. This nonstationarity is due to wavelike motions, meandering of the wind vector, and numerous unidentified small-scale mesoscale motions. While the data do not reveal an obvious critical gradient Richardson number, the maximum downward heat flux increases approximately linearly with increasing friction velocity for significant stability. The largest of our datasets is chosen to more closely examine the influence of stability, nonstationarity, distortion of the mean wind profile and self-correlation on the flux-gradient relationship. Stability is expressed in terms of z/L, the gradient Richardson number or the bulk Richardson number over the tower layer. The efficiency of the momentum transport systematically increases with increasing nonstationarity and attendant distortion of the mean wind profile. Enhancement of the turbulent momentum flux associated with nonstationarity is examined in terms of the nondimensional shear, Prandtl number and the eddy diffusivity.  相似文献   

14.
何齐强  吕梅  张铭 《大气科学》1994,18(4):485-491
本文依据华东中尺度天气试验加密的边界层资料,分析研究了1983年4月28日江淮地区冷锋锋生过程。发现锋生具有短时性、不均匀性及主要表现在边界层中等特点。文中还用Ekman动量近似导出的边界层锋生环流方程对边界层中的锋生环流做了诊断分析。  相似文献   

15.
A case study of warm air advection over the Arctic marginalsea-ice zone is presented, based on aircraft observations with direct flux measurements carriedout in early spring, 1998. A shallow atmospheric boundary layer (ABL) was observed, which wasgradually cooling with distance downwind of the ice edge. This process was mainly connected with astrong stable stratification and downward turbulent heat fluxes of about 10–20 W m-2, but wasalso due to radiative cooling. Two mesoscale models, one hydrostatic and the other non-hydrostatic,having different turbulence closures, were applied. Despite these fundamental differences betweenthe models, the results of both agreed well with the observed data. Various closure assumptions had amore crucial influence on the results than the differences between the models.Such an assumption was, for example,the parameterization of the surface roughness for momentum (z0) and heat (zT). This stronglyaffected the wind and temperature fields not only close to the surface but also within and abovethe temperature inversion layer. The best results were achieved using a formulation for z0 that took intoaccount the form drag effect of sea-ice ridges together withzT = 0.1z0. The stability within theelevated inversion strongly depended on the minimum eddy diffusivity Kmin. A simple ad hocparameterization seems applicable, where Kmin is calculated as 0.005 timesthe neutral eddy diffusivity. Although the longwave radiative cooling was largest within the ABL, theapplication of a radiation scheme was less important there than above the ABL. This was related to theinteraction of the turbulent and radiative fluxes. To reproduce the strong inversion, it wasnecessary to use vertical and horizontal resolutions higher than those applied in most regional andlarge-scale atmospheric models.  相似文献   

16.
The impact of well watered mesoscale wheat over mid-latitude arid areas on mesoscale boundary layer structures (MBLS) and climate has been investigated in the study .using a mesoscale biophysical, meteorological model (BM) developed in the current study. The BM is composed of six modules:mesoscale atmospheric module, soil module, vegetation module, snow-atmosphere interaction module, underlying surface meteorology module and subgrid scale flux parameterization module. The six modules constitute an interacting system by supplying boundary conditions to each other.The investigation indicates that a horizontal pressure gradient associated with mesoscale perturbations in temperature and humidity is created during the day, which results from more water transpired from the vegetation canopy (VC) and evaporated from underlying wet soil. Non-classical mesoscale circulations (called as vegetation-breeze) are forced by the pressure perturbations with wind speeds about 5 m / s, flowing from the VC to the adjacent  相似文献   

17.
通过遥感技术与地面测定相结合的方法,对北京城市热岛现状作观测研究,得到北京城市地面的温度分布特点。使用北京大学城市边界层模式从气象观点就“楔形绿地”规划对北京城市气候的影响进行研究和评价,模式通过对城市地表复杂性和多样性的特征进行细致描述,建立了一个细致模拟城市特点的城市边界层能量平衡模式,并用此能量平衡模式得到的地面温度作为下边界条件,中尺度气象模式MM5做初始场和侧边界条件,建立一个最小分辨率为500 m的城市边界层模式系统,来研究城市边界层在中尺度背景场作用下的精细结构。通过个例模拟,模式能够较准确地模拟城市边界层的风温场分布情况,可以用来对楔形绿地规划进行模拟试验。通过对规划后的气象场在特定的气象条件下进行模拟,结果显示,建造大型的楔形绿地后,绿地区域及绿地周围约1 km以内的地区温度有所降低,降低的程度由规划前后的地表类型改变的剧烈程度、风速大小及与绿地的距离决定,但是这种规划方案却会因城市的下风方向的风速减小而导致通风不畅。  相似文献   

18.
We present similarity solutions for the mean boundary-layer profiles under an axisymmetric vortex that is in gradient wind balance; the similarity model includes the nonlinear momentum advection and curvature terms. These solutions are a generalization of the Ekman layer mean flow, which is the canonical boundary-layer basic state under a uniform, geostrophically-balanced flow. Near-surface properties such as inflow angle, surface wind factor, diffusive transport of kinetic energy into the surface layer and dissipational heating are calculated and shown to be sensitive to the choice of turbulence parameterization.  相似文献   

19.
A numerical modelling study is presented focusing on the effects of mesoscale sea-surface temperature (SST) variability on surface fluxes and the marine atmospheric boundary-layer structure. A basic scenario is examined having two regions of SST anomaly with alternating warm/cold or cold/warm water regions. Conditions upstream from the anomaly region have SST values equal to the ambient atmosphere temperature, creating an upstream neutrally stratified boundary layer. Downstream from the anomaly region the SST is also set to the ambient atmosphere value. When the warm anomaly is upstream from the cold anomaly, the downstream boundary layer exhibits a more complex structure because of convective forcing and mixed layer deepening upstream from the cold anomaly. An internal boundary layer forms over the cold anomaly in this case, generating two distinct layers over the downstream region. When the cold anomaly is upstream from the warm anomaly, mixing over the warm anomaly quickly destroys the shallow cold layer, yielding a more uniform downstream boundary-layer vertical structure compared with the warm-to- cold case. Analysis of the momentum budget indicates that turbulent momentum flux divergence dominates the velocity field tendency, with pressure forcing accounting for only about 20% of the changes in momentum. Parameterization of surface fluxes and boundary-layer structure at these scales would be very difficult because of their dependence on subgrid-scale SST spatial order. Simulations of similar flow over smaller scale fronts (<5 km) suggest that small-scale SST variability might be parameterized in mesoscale models by relating the effective heat flux to the strength of the SST variance.  相似文献   

20.
A quantitative diagnosis is carried out for the upward branch of a local meridional circulation over southern China(SC) during the abnormal snowstorms with severe freezing rain from 10 January to 3 February 2008.The diagnostic study shows that the upward branch is mainly associated with the zonal advection of westerly momentum and meridional temperature advection instead of the latent heating(which is commonly the dominant factor in many other storm cases).The corresponding weather analyses indicate that(1) the zonal advection of westerly momentum represents the effect of the upper-level divergence on the anticyclone-shear side in the entrance of a 200 hPa westerly jet with a westward deviation from its climatological location over southwestern Japan;(2) the meridional temperature advection represents the interaction between the mid-lower layer(850 to 400 hPa) warm advection over SC(ahead of temperature and pressure troughs with the latter trough deeper than the former in the Bay of Bengal) and cold advection over north China(steered by an underlying flow at 500 hPa);(3) the relatively weak vapor transport(compared to that of spring,summer and autumn) from the Bay of Bengal and the South China Sea to SC and the existence of a temperature inversion layer in the lower troposphere over SC diminish the effect of latent heating.With the significant increase of vapor transport after 24 January,the role of latent heating is upgraded to become the third positive contributor to the upward branch over SC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号