首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 184 毫秒
1.
机载激光雷达系统是一项综合性较强的应用系统,该系统的有效运行需要全球定位系统、激光扫描系统及航拍摄影系统、惯性测量系统等共同完成。机载激光雷达系统可穿透地表植被获取地表点高程数据,与传统GPS RTK方式采集的地表高程点进行整体精度分析,结果表明:检查点的均方根误差小于0.10 m,满足山区地形图测绘要求。通过无人机载激光雷达技术获取山区植被覆盖下的地表点云数据,具有工作效率高、劳动强度低等特点,可以为水利测绘项目提供较为丰富的断面图、数值高程模型(DEM)等基础数据,用于指导此类项目的规划设计。  相似文献   

2.
为解决抽水蓄能电站大高差、植被覆盖区域传统测量技术测量困难以及航摄测量精度低等问题,将飞马多旋翼无人机D2000与小型机载激光雷达D-LiDAR2000引入抽水蓄能电站测量中。本文以贵州省某抽水蓄能电站可研设计阶段测量为例,应用小型机载激光雷达D-LiDAR2000获取测区原始三维点云数据,并基于后处理DGNSS+INS紧组合解算的POS对原始点云进行了融合。经过植被透过性分析、航带误差分析、平面和高程精度检查,结果表明基于DGNSS+INS紧组合POS融合的小型机载激光雷达D-LiDAR2000的点云数据能够满足抽水蓄能电站数字高程模型、大比例尺地形图等产品的生产需求。  相似文献   

3.
小型消费级无人机地形数据精度验证   总被引:5,自引:0,他引:5  
低空遥感是近几年快速发展、应用非常广泛的新兴技术。小型消费级无人机集成可见光传感器,具有快速、灵活、高性价比等优势,受到广泛关注。然而目前有关该类无人机综合测量精度的研究不足,影响其进一步的推广应用。为此,本文开展了针对大疆(Phantom 3 professional)小型消费级无人机地形测量数据精度验证工作,设定6种航高(50 m、60 m、70 m、80 m、90 m和100 m)获取研究区的立体像对,生成影像点云(point cloud)、数字表面模型(DSM)以及数字正射影像图(DOM)等结果。在测量精度验证中,首先,在标准实验场均匀布设地面控制点(GCP),利用差分GPS测出GCP的高精度3维坐标;然后,通过GCP对立体像对进行绝对定位;最后,利用误差统计方法分析上述结果的测量精度。验证表明,在50—100m航高时,无人机影像结果的分辨率为2.22—4.23 cm,水平方向平均误差为±0.51 cm,垂直方向平均误差为±4.39 cm,相对均方根误差(RMSE)水平方向为±2.79 cm,垂直方向为±9.98 cm。研究结果表明,小型消费级无人机在飞控系统下的测量精度可达厘米级,这不仅为野外地理和生态调查工作者提供一种低成本、快速、灵活与精确获取地形信息的新型测量手段,同时还对使用此类无人机做航测应用及飞行参数设置提供一定参考。  相似文献   

4.
机载激光雷达(Li DAR)是一种激光探测和测距系统,可主动地进行对地观测并获取物体坐标信息。由于受到系统误差和不确定的偶然误差影响,解算出的点云数据成果会带有航带性误差,即相邻两条航带的重叠区域内同名地物的三维坐标不一致,故常采用无地面控制点的航带平差方法予以修正。但这种航带平差可能造成系统内部精度的提高而牺牲了外部精度。本文基于Burman航带平差方程,就地面控制点的引入与否及其对点云内外精度的影响进行了对比实践研究,结果表明,与引入地面控制点方式相比,无地面控制点条件下的航带平差结果,同样能消除航带间的相对高程差异,且对系统误差的检校效果良好,但在绝对高程精度上,反而引起误差增大的副效应。因此,在仅关心内部相对精度的情况下,可以考虑使用无地面控制点的方式进行成图作业,以提高地物间的相对位置关系精度。  相似文献   

5.
地面LiDAR数据模拟及单木LAI反演   总被引:1,自引:0,他引:1  
地面激光雷达Li DAR可以快速获取高精度、高密度的点云数据,在植被结构参数获取方面的应用越来越广泛。为了定量分析地面激光雷达点云数据获取单木结构参数的能力和精度,本文提出利用光线跟踪结合植被真实结构模拟地面3维激光扫描仪的单木点云数据(以RIEGL VZ-1000为例),并结合间隙率模型反演单木叶面积指数LAI。在点云模拟过程中,充分考虑了脉冲特性,包括光斑大小、波束发射角以及回波探测强度。重点分析了光斑大小和最小探测强度对LAI反演的影响,并采用根河实测单木数据进行了验证。结果表明,光斑大小和最小探测强度的设定对于LAI反演结果存在很大影响,该结论对于提高地面激光雷达点云数据反演植被结构参数精度具有重要意义。  相似文献   

6.
无人机的航空摄影测量技术让传统森林调查的手段向数字化和智能化方向发展。为了提高森林资源信息采集的精度和效率,减少外业工作时间,降低工作强度,本文对利用无人机立体摄影技术获取森林资源信息的方法及其精度进行了研究。利用旋翼无人机搭载五目相机获取了研究区域的三维立体影像,通过软件在立体影像中提取树高、三维坐标、冠幅及面积;通过全站仪、胸径尺和RTK载波相位差分技术等高精技术获取上述森林资源信息,并以此作为真值检测无人机立体摄影技术,获取森林资源信息的精度。结果表明,无人机立体摄影技术提取25棵样本树木的树高相对误差平均值为0.61%;无人机提取值与人工实测冠幅值线性模型y=0.998 9x+0.068 5,相关系数R2=0.98,说明无人机立体摄影技术获取冠幅精度高;无人机获取三维坐标定位的真误差区间为[-13,17],其中高程坐标的离散区间大于平面坐标离散区间,平面坐标的精度为3 cm左右,而高程坐标的精度为10 cm左右;无人机立体摄影技术获取样本面积值和全站仪测量面积值(拟定为真值)比较接近,相关系数达0.98。由此可得,无人机立体摄影技术可以高精度地获取森林资源信息,可以提高效率,节约成本并降低工作强度,具有较高的实际推广价值。  相似文献   

7.
亚热带森林参数的机载激光雷达估测   总被引:5,自引:2,他引:3  
付甜  庞勇  黄庆丰  刘清旺  徐光彩 《遥感学报》2011,15(5):1092-1104
通过应用机载激光雷达数据,在分析云南省中部的78块样地的基础上提出2个预测森林不同生物特性的统计模型(加权平均高度的预测模型和生物量的预测模型),并讨论了预测结果及其精确性。从激光雷达数据中提取了2组变量(树冠高度变量组和植被密度变量组)作为自变量,采用逐步回归方法进行自变量选择。结果表明,激光雷达数据与森林的平均树高和地上各部分生物量有很强的相关性。对于3种不同森林类型(针叶林,阔叶林和混交林),平均树高估测均能达到比较高的精度;生物量的估测结果是针叶林优于阔叶林,混交林的生物量与激光雷达数据则没有明显相关性。最后,对回归分析的结果和影响预测精度的因素进行讨论,认为预测结果的精度可能与森林类型、激光雷达采样时间和采样密度以及坐标误差等因素有关。  相似文献   

8.
目前,针对利用无人机技术在山地起伏大、山体植被密集区域,难以获取地面点及DEM等问题,本文提出了一种结合布料模拟算法和改进的局部最大值算法,利用树顶点、树高等植被信息,提取地面点,进而生成整个区域的DEM的方法。以中国传统村落德夯村为例,利用植被系数和高程信息将点云分割为植被密集区和非植被密集区两个部分。在非植被密集区,通过布料模拟算法和改进的局部最大值算法分别提取地面点和树顶点,计算平均树高;在植被密集区,通过该区域的树顶点推算得到植被密集区的近似地面点,最终将两部分的地面点云进行TIN插值得到该地区的DEM。试验结果表明,利用此方法生成的DEM均方根误差,在非植被密集区达0.037 m,植被密集区可达1.606 m,整体平均误差达1.492 m,总体精度较好,基本可以满足村落尺度空间分析的需求。  相似文献   

9.
为了有效地抑制与补偿平台运动误差产生的像质退化,针对机载激光雷达平台的运动特性研究激光雷达点云分布的变化规律。从理论上推导了平行扫描式激光雷达、Z扫描式激光雷达和圆锥扫描式激光雷达的点云坐标分布表达式;通过仿真讨论了机载激光雷达运动参数与激光雷达点云分布之间的规律;基于平行扫描式激光雷达,研究了5种运动误差对激光雷达点云坐标分布的影响,最终仿真得到根据影响程度由大到小依次为侧滚角误差、俯仰角误差、偏航角误差、机身上下抖动误差、速度瞬时变化误差。该研究结果为进一步研究机械补偿,以提高激光雷达系统成像的精度提供了理论依据和基础。  相似文献   

10.
联合应用地面三维激光扫描技术和无人机航测技术采集了广钢炼钢遗址空间数据,并进行了现状测绘与三维建模。三维激光扫描获取遗址内外高精度点云数据;无人机航测获取遗址顶部点云及周边地形DSM和DOM,将航摄DSM数据拟合到激光点云上,使得航摄DSM精度达到12.6cm,且弥补了激光点云的漏洞;采用融合的点云数据测制了平立剖测绘图,建立了三维模型。上述两种技术优势互补,形成了一种高效率、高精度、全方位的历史遗迹测量与建模的解决方案。  相似文献   

11.
闫利  谭骏祥  刘华  陈长军 《测绘学报》2018,47(4):528-536
车载激光扫描可快速获取大场景点云,由于存在视场限制和遮挡,需地面激光点云作补充。车载与地面点云分别位于大地坐标和局部坐标系统,本文提出结合遗传算法(genetic algorithm,GA)和(iterative closed point,ICP)的自动点云配准方法以统一基准。ICP采用局部优化,效率较高,但依赖初始解;GA为全局优化方法,但效率低。融合策略为当GA配准趋于局部搜索时,采用ICP完成配准。GA配准以地面激光扫描仪内置GPS测量粗略位置限定优化搜索空间。为提高GA配准精度,提出了最大化归一化匹配分数之和(normalized sum of matching scores,NSMS)配准模型。实测数据试验验证了NSMS模型的有效性,GA配准均方根误差(root mean square error,RMSE)为1~5 cm;融合配准比GA配准效率高约50%。  相似文献   

12.
ICESat-2机载试验点云滤波及植被高度反演   总被引:1,自引:0,他引:1  
新一代星载激光雷达卫星ICESat-2将采用多波束微脉冲光子计数技术,并进行高程剖面式的对地观测。由于该点云数据具有背景噪声大、密度低并呈线状分布等特点,传统的点云滤波算法并不适用,研究新的点云滤波算法十分必要。本文以ICESat-2的机载模拟器MABEL数据为例,首先介绍了微脉冲光子计数激光雷达的基本原理和数据特点,并针对高程剖面点云提出基于局部距离统计和最小二乘局部曲线拟合的点云滤波算法;然后,对美国加利福尼亚州Sierras-Forest地区MABEL试验中532 nm通道的光子点云进行滤波处理,并利用识别的地面点插值得到3 m分辨率的线状DEM,进而估算了该区域美国云杉的平均树高;最后,对该滤波算法进行精度评价,并分析了误差来源及其对DEM精度和树高反演精度的影响。结果表明:(1)该算法整体精度达97.6%,能有效剔除绝大部分噪声点且对地形起伏具有较强的自适应能力;(2)误分噪声点影响了滤波过程中局部地形的拟合,而滤波过程中的分类误差将降低DEM和树高反演的精度。  相似文献   

13.
以浙江省海宁市4种代表行道树(广玉兰、无患子、悬铃木、香樟树)为研究对象,结合无人机(UAV)影像和三维激光扫描数据,利用ContextCapture、LiDAR360软件完成点云拼接、滤波、降噪和编辑,通过迭代最近点算法实现点云精细匹配,完成多平台点云数据融合,进而得到数字表面模型与数字高程模型,并制作冠层高度模型;采用分水岭分割算法对不同行道树树种的冠层高度模型进行单木分割,并综合局部最大值法实现单木树高、冠幅的参数提取。结果表明,本文方法进行行道树单木分割的精度高,树高、冠幅参数提取值的效果好,满足行道树几何参数调查要求。  相似文献   

14.
机载激光雷达平均树高提取研究   总被引:16,自引:3,他引:13  
为了研究机载激光雷达(LiDAR)树高提取技术,以山东省泰安市徂徕山林场为实验区,于2005年5月进行了机载LiDAR数据获取和外业测量.通过对LiDAR点云数据的分类处理,分别得到了试验区的地面点云子集、植被点云子集和高程归一化的植被点云子集.基于高程归一化的植被点云子集计算了上四分位数处的高度,与实地测量的数据进行了比较,并结合中国森林调查规程进行了实用性分析.结果表明:对于较低密度的点云数据,使用分位数法可以较好地进行林分平均高的估计;机载激光雷达技术对树高估计是可行的,精度都高于87%,总体平均精度为90.59%,其中阔叶树的精度高于针叶树.该试验精度可以满足中国二类森林调查规程中平均树高因子的一般商品林和生态公益林的精度要求,对国有商品林小班的调查精度要求(5%)存在一点差距,需要在国有商品林区进一步开展验证工作.对本试验区而言,已经可以满足其作为森林公园生态公益林的调查要求.  相似文献   

15.
针对复杂体育场馆外部精细建模在完整性和精度方面存在的问题,本文提出了地面控制、地面激光扫描、无人机建模控制一体化的高精度建模方法。首先应用特制标志建立区域内控制、扫描、无人机高精度一体化坐标系统;其次对地面多站激光扫描点云结合控制坐标进行区域整体平差配准,生成一体化坐标系统下高精度地面点云模型;然后应用无人机数据和控制点生成一体化坐标下的高精度顶部数据;最后融合两种数据生成对象完整高精度精细模型。试验证明,整体平差解算方法可实现多站点云的高精度配准,一体化控制可实现非同源异质数据高精度融合,解决了复杂建筑对象的高精度建模问题,具有很大的实用价值。  相似文献   

16.
针对大光斑激光雷达回波信号噪声影响森林冠顶高估测精度,且回波分析法判定回波位置受限于平坦地区的问题,利用高斯低通滤波和小波去噪两种方法对GLAS波形进行去噪处理,提出了结合均方根倍差法和回波分析法来判定回波位置的有效算法。经小波去噪后信号的信噪比23.360 704,均方根误差为0.000 233 3,经均方根倍差法和回波分析法相结合来判定回波位置估测的冠顶高结果与实测结果相关性系数r值为0.864,效果均优于高斯低通滤波去噪。基于GLAS回波数据实验结果表明:小波去噪较好地实现了对回波信号的去噪处理,均方根倍差法和回波分析法相结合,实现了对坡度相对较大地区的GLAS波形的回波开始位置和地面回波位置的准确判定,对森林冠顶高的精确估算具有重要意义。  相似文献   

17.
利用4种激光扫描设备对地下空间扫描,针对获得的点云数据,用全站仪测量研究区内特征点三维坐标,统一点云空间参考;并从点云数据中获取特征点坐标,与测量的三维坐标对比分析。结果显示:推扫式激光扫描设备比架站式精度略低,最弱方向中误差为0.128 m,而架站式为0.039 m;用推扫式激光扫描设备对地下空间进行测量,能满足1∶500数字线划图的测量精度要求。  相似文献   

18.
常规的矢量地图精度校验采用抽样与实地测量,外业工作量大,自动化程度低。针对这一问题,本文提出基于SSW激光点云数据的矢量地图平面精度自动校验方法。首先,使用车载激光扫描器获得道路两侧高精度点云数据,并对点云数据进行滤波、坐标转换和精度检验;其次,基于多特征识别算法,使用SWDY软件提取点云特征点线;最后,利用最近邻法搜索待检矢量图中的同类地物特征点线,并计算匹配点线对的中误差。以兴化城区为试验区,采用该方法检测该地区1:1000比例尺的矢量地图平面精度,试验结果显示,成功匹配了点云数据205个地物特征中的201个,矢量地图的总体中误差为0.26 m,且能够发现待检测矢量地图中的采集丢漏与明显错误。本文方法可以减少现有检测方法的野外实测工作量,增加检测样本数量,降低检测过程中的人为干扰因素,有效提升检测的可靠性与检测效率。  相似文献   

19.
随着无人机应用的普及和数码相机性能的提升,利用无人机搭载数码相机快速获取矿区航测影像,配合适量控制点得到符合精度的三维数据成为可能。本文介绍了一种采用测图鹰X100搭载SONY a7R数码相机进行外业数据采集,借助C++和OpenCV配合少量地面控制点进行光束法平差,并用PMVS算法生成密集点云的低成本快速高效露天矿三维重构方法。通过在露天矿试验,结果表明该方法所得DOM和DSM的平面中误差为0.113 m,高程中误差为0.121 m,邻近地物点间距中误差为0.151 m,均满足1:500地形图国家标准的精度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号