首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a model of facies distribution within a set of early Cretaceous, deep‐lacustrine, partially confined turbidite fans (Sea Lion Fan, Sea Lion North Fan and Otter Fan) in the North Falkland Basin, South Atlantic. As a whole, ancient deep‐lacustrine turbidite systems are under‐represented in the literature when compared with those documented in marine basins. Lacustrine turbidite systems can form extensive, good quality hydrocarbon reservoirs, making the understanding of such systems crucial to exploration within lacustrine basins. An integrated analysis of seismic cross‐sections, seismic amplitude extraction maps and 455 m of core has enabled the identification of a series of turbidite fans. The deposits of these fans have been separated into lobe axis, lobe fringe and lobe distal fringe settings. Seismic architectures, observed in the seismic amplitude extraction maps, are interpreted to represent geologically associated heterogeneities, including: feeder systems, terminal mouth lobes, flow deflection, sinuous lobe axis deposits, flow constriction and stranded lobe fringe areas. When found in combination, these architectures suggest ‘partial confinement’ of a system, something that appears to be a key feature in the lacustrine turbidite setting of the North Falkland Basin. Partial confinement of a system occurs when depositionally generated topography controls the flow‐pathway and deposition of subsequent turbidite fan deposits. The term ‘partial confinement’ provides an expression for categorising a system whose depositional boundaries are unconfined by the margins of the basin, yet exhibit evidence of internal confinement, primarily controlled by depositional topography. Understanding the controls that dictate partial confinement; and the resultant distribution of sand‐prone facies within deep‐lacustrine turbidite fans, is important, particularly considering their recent rise as hydrocarbon reservoirs in rift and failed‐rift settings.  相似文献   

2.
于水  程涛  陈莹 《地球科学》2012,37(4):763-770
尼日尔三角洲盆地深水沉积研究是目前世界油气勘探的热点问题之一.通过对三维地震资料、岩心及测井曲线分析,揭示了尼日尔三角洲盆地南部地区新近系深水沉积体系特征.基于不同属性的层序界面识别,研究区划分出SQ1-SQ6共6个三级层序,并建立层序地层格架,进而总结出研究区深水沉积模式.研究区除堆积正常半深海-深海泥岩外,还广泛发育海底扇沉积,海底扇由浊积水道和海底扇朵体组成,其中水道分支少、弯度大,外部形态类似曲流河;朵体平面上成朵叶状分布,可以划分为末端朵体和决口扇朵体.研究区新近系地层自下向上由老到新,相对海平面先下降再上升,SQ1-SQ4层序以海底扇朵体沉积为主,SQ5-SQ6层序以浊积水道沉积为主.   相似文献   

3.
4.
5.
The down‐dip portion of submarine fans comprises terminal lobes that consist of various gravity flow deposits, including turbidites and debrites. Within lobe complexes, lobe deposition commonly takes place in topographic lows created between previous lobes, resulting in an architecture characterized by compensational stacking. However, in some deep water turbidite systems, compensational stacking is less prominent and progradation dominates over aggradation and lateral stacking. Combined outcrop and subsurface data from the Eocene Central Basin of Spitsbergen provide a rare example of submarine fans that comprise progradationally stacked lobes and lobe complexes. Evidence for progradation includes basinward offset stacking of successive lobe complexes, a vertical change from distal to proximal lobe environments as recorded by an upward increase in bed amalgamation, and coarsening and thickening upward trends within the lobes. Slope clinoforms occur immediately above the lobe complexes, suggesting that a shelf‐slope system prograded across the basin in concert with deposition of the lobe complexes. Erosive channels are present in proximal axial lobe settings, whereas shallow channels, scours and terminal lobes dominate further basinward. Terminal lobes are classified as amalgamated, non‐amalgamated or thin‐bedded, consistent with turbidite deposition in lobe axis, off‐axis and fringe settings, respectively. Co‐genetic turbidite–debrite beds, interpreted as being deposited from hybrid sediment gravity flows which consisted of both turbulent and laminar flow phases, occur frequently in lobe off‐axis to fringe settings, and are rare and poorly developed in channels and axial lobe environments. This indicates bypass of the laminar flow phase in proximal settings, and deposition in relative distal unconfined settings. Palaeocurrent data indicate sediment dispersal mainly towards the east, and is consistent with slope and lobe complex progradation perpendicular to the NNW–SSE trending basin margin.  相似文献   

6.
The Lauzanier area represents the northernmost extension of the Annot Sandstone series and contains deposits between 650 and 900 m-thick. This basin was active from upper Bartonian or lower Priabonian to early Rupelian. It is composed of two superposed units separated by a major unconformity. The sediment supply is due to channelled flows coming from the south. Flow processes include mass flow to turbidity currents. The size of the particles and the absence of fine-grained sediment suggest a transport over a short distance. The Lower Unit is made of coarse-grained tabular beds interpreted as non-channelled lobe deposits. The Upper Unit is made of massive conglomerates interpreted as the channelled part of lobes. These lobe deposits settle in a tectonically confined basin according to topographic compensation that occurs from bed scale to unit scale. The abrupt progradation between the lower and the upper unit seems related to a major tectonic uplift in the area. This uplift is also suggested by a change in the petrographic nature of the source and an abrupt coarsening of the transported clasts.This field example allows providing high resolution analysis for depositional sedimentary sequences of terminal lobe deposits in a coarse-grained turbidite system. The outcrop analysis shows the lateral evolution of deposits and the system progradation allows a longitudinal analysis of facies evolution by superposing on the same outcrops the channelled lobe system and the non-channelled lobe system. These results of high-resolution outcrop analysis can be extrapolated to results obtained on sedimentary lobes in recent deep-sea turbidite system that are either restricted to cores, or with a lesser resolution (seismic).  相似文献   

7.
《China Geology》2020,3(4):623-632
North Carnarvon Basin is a gas province with minor oily sweet spots in deepwater area with water depth more than 500 m, which is one of the hot spots of global petroleum exploration for its series of giant hydrocarbon discoveries in recent years. However, the degree of oil and gas exploration in deepwater area is still low, and the conditions for oil and gas accumulation are not clear. Based on the current exploration situation and latest database of fields, applying multidisciplinary analysis of hydrocarbon geology, hydrocarbon accumulation elements and its exploration direction of North Carnarvon Basin in deepwater area are analyzed. The results show that there are three sets of main source rocks in deepwater area of North Carnarvon Basin, which are Triassic marine shale in Locker Formation and delta coal-bearing mudstone with thin carbonaceous mudstone in Mungaroo Formation, Lower –Middle Jurassic paralic carbargilite and coal measure strata in Athol Formation and Murat Formation, Cretaceous delta mudstone in Barrow Group and marine shale in Muderong Formation. Most source rock samples show gas-prone capability. The coarse sandstone of delta facies in Middle–Upper Triassic Mungaroo Formation is the most important reservoir in deepwater area, Lower Cretaceous Barrow Group deep-water gravity flow or underwater fan turbidite sandstone is the secondly main reservoir. Lower Cretaceous marine shale in Muderong Formation is most important regional caprock. Triassic mudstone in Mungaroo Formation is an important interlayer caprock in deepwater area. There are two main reservoir accumulation assemblages in deepwater area, one is Triassic structural-unconformity plane reservoir accumulation assemblage of Locker Formation to Mungaroo Formation, and the other is Lower–Middle Jurassic Athol Formation and Murat Formation–Lower Cretaceous stratigraphic lithology-structural reservoir accumulation assemblage of Barrow Group to Muderong Formation. There are three main control factors of hydrocarbon Accumulation: One is coupling of source and seal control hydrocarbon distribution area, the second is multi-stage large wave dominated deltas dominate accumulation zone, the third is direction of hydrocarbon migration and accumulation in hydrocarbon-rich generation depression was controlled by overpressure. The south of Exmouth platform in deepwater area is adjacent to hydrocarbon rich depression zone, reservoir assemblage is characterized by “near source rocks, excellent reservoir facies, high position and excellent caprocks ”, which is the main battlefield of deepwater oil and gas exploration in North Carnarvon Basin at present. There are a lot of fault block traps in the northern structural belt of Exmouth platform, and the favorable sedimentary facies belt at the far end of delta plain in Mungaroo Formation is widely distributed, which is the next favorable exploration zone. The Lower Cretaceous, which is located at the concave edge uplift adjacent to the investigator depression and the Exmouth platform, also has a certain exploration prospect in northwest of deepwater area.  相似文献   

8.
利用多个地震数据体的地震反射特征,分析了孟加拉湾若开盆地深水沉积体系的不同沉积结构单元类型(峡谷、水道及水道复合体、天然堤—漫溢沉积、朵体以及块体搬运沉积)的典型地震响应特征、及其发育的位置,构建了研究区陆架—陆坡—盆底的沉积结构单元演化模式。研究表明,一个深水沉积体系垂向上自下而上的组合样式为:底部块体搬运沉积及厚层大规模朵体沉积,上覆水道复合体沉积,之后为水道—天然堤复合体沉积、以及一些小规模朵体沉积,顶部为薄层深海泥岩沉积。横向上自陆架向深海盆地的发育模式表现为:陆架/上陆坡峡谷—上陆坡侵蚀型水道—下陆坡侵蚀沉积型水道—沉积型水道—盆地朵体。  相似文献   

9.
A detailed survey of the upper and middle Nova Scotian continental slope at 42°50′N and 63°30′W indicates a complex morphology dominated by mass movements on various scales and an immature turbidity current channel. The range of sediment facies is diverse including hemipelagic and turbidite muds, turbidite sands and gravelly sandy muds of debris flow origin. Deformed units, interpreted as slump deposits are also observed. Several facies associations, related to discrete morphological environments, are recognized. Thick turbidite sand units with minor intervening mud beds are characteristic of the high-relief uppermost slope and channel margin. Thinner turbidite sands, deformed slump beds and various mud facies are associated with small-scale, hummocky mid-slope topography. Sand beds are more abundant in the depressions than on intervening hummocks indicating the preferred transport paths of small turbidity currents. At the lower end of the main turbidity current channel, frequent turbidite sand beds with relatively minor mud beds are deposited on a depositional lobe. In areas unaffected by mass movements, alternating bioturbated mud and sandy muds make up the core sequences. A local model of sedimentation is proposed for this area and illustrates that simple models of continental slope sedimentation only apply to a limited range of settings.  相似文献   

10.
Despite a globally growing seismic and outcrop analogue data set, the detailed (centimetre to decametre) internal stratal make up of deep‐marine basin‐floor ‘channelized‐lobe’ strata remain poorly known. An ancient analogue for modern, mixed‐sediment, passive margin, deep‐marine basin‐floor fans is the well‐preserved Neoproterozoic Upper and Middle Kaza groups in the southern Canadian Cordillera. This succession is a few kilometres thick and comprises six sedimentary facies representing deposition from different kinds of sediment‐gravity flows. Representative lateral and vertical assemblages of one or more of these facies comprise six stratal elements, including: isolated scours, avulsion splays, feeder channels, distributary channels, terminal splays, and distal and off‐axis fine‐grained turbidite units. The internal characteristics of the various stratal elements do not differ from more distal to more proximal settings, but the relative abundance of the various stratal elements does. The difference in relative abundance of stratal elements in the kilometre‐scale stratigraphy of the Kaza Group results in a systematic upward change in architecture. The systematic arrangement of the stratal elements within the interpreted larger bodies, or lobes, and then lobes within the basin‐floor fan, suggests a hierarchical organization. In this article a hierarchy is proposed that is based on avulsion but, also importantly, the location of avulsion. The proposed avulsion‐based hierarchical scheme will be a useful tool to bridge the scalar gap between outcrop and seismic studies by providing a single stratigraphic framework and terminology for basin‐floor stratal elements.  相似文献   

11.
深水浊积砂岩油气藏是当今世界油气勘探的热点领域。基于地震、钻井、地球化学等资料,系统分析了西非北段科特迪瓦盆地深水浊积砂岩油气成藏的差异性。研究表明,科特迪瓦盆地经历了裂陷期(早白垩世)和漂移期(晚白垩世—现今)两大构造演化阶段,漂移期发育塞诺曼—土伦阶优质海相烃源岩,裂陷期发育阿普特—阿尔布阶湖相烃源岩。漂移期层系为盆地的主力勘探层系,发育两种类型的浊积砂岩油气藏。塞诺曼—土伦阶浊积砂岩油气藏为典型的“砂体运移、自生自储、源内成藏”的油气成藏模式,其油气主要来源于塞诺曼—土伦阶烃源岩,广泛分布的浊积砂岩是油气运移的主要路径,烃源岩的生、排烃期决定了油气成藏时期,是否发育有效烃源岩是该类油气藏成藏的主控因素。圣通—马斯特里赫特阶浊积砂岩油气藏为典型的“断裂运移、下生上储、源外成藏”的油气成藏模式,其油气主要来源于深部裂陷期阿普特—阿尔布阶湖相烃源岩,断裂是油气运移的主要路径,断裂的活动控制了油气的运移和成藏时期,是否发育油源断裂是该类油气藏成藏的主控因素。  相似文献   

12.
丽水36-1构造位于东海陆架盆地(台北坳陷)丽水西次凹的中东部,该凹陷属新生代断陷型盆地,呈北东向展布,上古新统灵峰组和明月峰组是主要目的层段。根据该构造已钻3口井进行系统沉积学和测井相研究,上古新统物源主要来自凹陷西部的闽浙隆起带和中部的灵峰凸起带,可能还有北部的雁荡凸起带。不同的物源区通过断层的活动和海平面的升降等控制着沉积体系的发育和展布。在凹陷下陷兴盛和海平面快速上升期,灵峰凸起带物源经过边缘大断层在其西侧形成扇三角洲,进一步向凹陷中心推进形成深水浊积扇和浅海沉积;闽浙隆起带物源可能沿着不同的入口在凹陷西斜坡形成扇三角洲,它们也可进一步向凹陷深处推进形成深水浊积扇体。根据油气聚集规律和物源分析,形成于凹陷深水区的浊积扇沉积和斜坡带的扇三角洲前缘沉积,具有良好的生储盖组合,是有利的勘探目标。  相似文献   

13.
Sandy lobe deposits on submarine fans are sensitive recorders of the types of sediment gravity flows supplied to a basin and are economically important as hydrocarbon reservoirs. This study investigates the causes of variability in 20 lobes in small late Pleistocene submarine fans off East Corsica. These lobes were imaged using ultra‐high resolution boomer seismic profiles (<1 m vertical resolution) and sediment type was ground truthed using piston cores published in previous studies. Repeated crossings of the same depositional bodies were used to measure spatial changes in their dimensions and architecture. Most lobes increase abruptly down‐slope to a peak thickness of 8 to 42 m, beyond which they show a progressive, typically more gradual, decrease in thickness until they thin to below seismic resolution or pass into draping facies of the basin plain. Lobe areas range from 3 to 70 km2 and total lengths from 2 to 14 km, with the locus of maximum sediment accumulation from 3 to 28 km from the shelf‐break. Based on their location, dimensions, internal architecture and nature of the feeder channel, the lobes are divided into two end‐member types. The first are small depositional bodies located in proximal settings, clustered near the toe‐of‐slope and fed by slope gullies or erosive channels lacking or with poorly developed levées (referred to as ‘proximal isolated lobes’). The second are larger architecturally more complex depositional bodies deposited in more distal settings, outboard more stable and longer‐lived levéed fan valleys (referred to as ‘composite mid‐fan lobes’). Hybrid lobe types are also observed. At least three hierarchical levels of compensation stacking are recognized. Individual beds and bed‐sets stack to form lobe‐elements; lobe‐elements stack to form composite lobes; and composite lobes stack to form lobe complexes. Differences in the size, shape and architectural complexity of lobe deposits reflect several inter‐related factors including: (i) flow properties (volume, duration, grain‐size, concentration and velocity); (ii) the number and frequency of flows, and their degree of variation through time; (iii) gradient change and sea floor morphology at the mouth of the feeder conduit; (iv) lobe lifespan prior to avulsion or abandonment; and (v) feeder channel geometry and stability. In general, lobes outboard stable fan valleys that are connected to shelf‐incised canyons are wider, longer and thicker, accumulate in more basinal locations and are architecturally more complex.  相似文献   

14.
In recent years, deep water areas have become popular exploration fields because of their abundant hydrocarbon resource potential. There are only relatively poor planar seismic profiles and no wells for deepwater areas of the Lingshui Formation in the Qiongdongnan Basin. A lot of faults developed and strata are fragmented due to high temperatures and high pressure, and this has resulted in dim sequence boundaries. Based on seismic data of the deepwater area and well data of bordering shallow water areas, Lingshui Formation was divided into four third class sequences; namely SI, SII, SIII and SIV, and the three-dimensional isochronous stratigraphic framework of the Lingshui Formation in the studied area was shaped. Based mainly on seismic attributes such as amplitude, continuity, internal structure and external shape, six typical seismic facies were identified, including mat-shaped, filling, wedge-shaped, foreset, moundy-shaped and lenticular-shaped, and a seismic facies distribution map was subsequently drawn. With studies on wells of bordering shallow water areas, regional sedimentary characteristics, and isopach map as references, sedimentary planar distribution features were analyzed. The deepwater area of the Lingshui Formation has mainly developed littoral and shallow sea. Sandstone bodies of fan delta, braided river delta, slope fan, basin floor fan, and turbidite fan are at an interdigitate junction to marine hydrocarbon source rocks and thus are favorable prospecting targets.  相似文献   

15.
《Sedimentology》2018,65(3):639-669
Active margin continental slope outcrops from the Eocene Juncal Formation, the Eocene La Jolla Group and the Miocene Capistrano Formation display sedimentary structures and depositional geometries that suggest deposition from Froude supercritical flow, based on comparison to strata produced by flume experiments. These deposits range from boulder‐size soft clasts and cobble‐size hard clasts to silt and mud, and display long‐wavelength and low‐amplitude convex‐up and concave‐up geometries that range from centimetre to hundreds of metres scale, low‐angle foresets and backsets, and common internal and bounding erosion surfaces from centimetres to tens of metres in depth. In places, planar laminations, structureless beds and normally graded beds are laterally or vertically associated with such structures. In other places, consistent backsets or deep and steep‐sided scours occur. This study aimed to discuss the origin of the observed bedforms, contributed to recognition of supercritical flow deposits on continental slopes and expanded the outcrop examples of supercritical flow deposits to silt and mud. This work implies that the erosive and powerful Froude supercritical flow turbidity currents may have a substantial impact on erosional and depositional dynamics on deepwater slopes, especially on active margins due to the steep gradients and high sediment supply.  相似文献   

16.
Sandy debris flow is a new genetic type of sand bodies, which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the “Bouma Sequence” and “turbidite fan” deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes. In this article, by applying sandy debris flows theory and combining a lot work of core, outcrop observation and analysis plus seismic profile interpretation, we recognized three types of sedimentary gravity flows that are sandy debris flows, classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin. Among the three types, the sandy debris flows are the most prominent and possesses the best oil bearing conditions. On the contrary, the classic turbidites formed by turbidity currents are limited in distribution; therefore, previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition. Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution, huge depth and prevalent advantages for oil forming, which make it one of the most favorable new areas for Ordos Basin prospecting.  相似文献   

17.
The main sediment depocenter along the Oman margin is the Al Batha turbidite system that develops in the Gulf of Oman basin. It is directly connected to the wadi Al Batha, and forms a typical sand and mud rich point source system that acts as regional sediment conduit and feeds a ~ 1000 km2 sandy lobe.The Al Batha lobe depositional architecture has been investigated in detail using very high-resolution seismic, multibeam echosounder data and sediment cores. Several scales of depositional architecture can be observed. The Al Batha lobe is composed of several depositional units, made of stacked elementary sediment bodies (thinner than 5 m) that are each related to a single flow event. The lobe is connected to the feeder system through a channel-lobe transition zone (CLTZ) that extends on more than 25 km. The lobe can be divided into proximal, middle and distal lobe areas. The proximal lobe is an area of erosion and by-pass with small axial feeder channels that rapidly splay into several small distributaries. They disappear in the mid-lobe area where deposits consist of vertically stacked tabular to lens-shaped sediment bodies, with a lateral continuity that can exceed 10 km. The distal lobe fringe shows a classical facies transition towards thin-bedded basin plain deposits.Sub-surface deposits consist of sandy turbidites and hyperpycnites, interbedded with fine-grained deposits (thin turbidites, hyperpycnites, or hemipelagites). Although these distal deposits are mainly related to flow transformations and concentration evolution, they highlight the importance of flooding of the wadi Al Batha on the sediment transfer to the deep basin. The thick sandy hyperpycnites recovered in such a distal area are also possibly related to the initial properties of gravity flows, in relation to the flooding characteristics of mountainous desert streams.Finally, the Al Batha lobe depositional architecture is typical of sand-rich lobes found within “small”, sand and mud rich turbidite systems fed by mountainous “dirty” rivers. Turbidite sedimentation in the Al Batha system appears to be primarily controlled by the strong climatic and geomorphic forcing parameters (i.e. semi-arid environment with ephemeral, mountainous rivers subjected to flash-flooding).  相似文献   

18.
深水沉积是近年来我国海域油气勘探重点之一,利用高精度二维和三维地震剖面的精细解剖,揭示了南海西北陆缘区深水沉积体系类型及其内部构成特征.这些深水地区除堆积正常深海-半深海泥岩外,还发育大量深水重力流沉积,包括块体流沉积、深水峡谷、沉积物波等大型沉积体.研究表明,南海西北陆缘区发育4类陆坡, 即进积型、滑塌型、水道化型、宽缓渐变型陆坡.不同陆坡类型具有不同地貌形态,发育不同的沉积体类型.大型块体流沉积主要发育于滑塌型和水道化型陆坡,沉积物波主要发育于宽缓渐变型陆坡下部及深海中央峡谷长昌段的周缘地区.由于南海西北陆缘自晚中新世以来形成向东开口的喇叭形变深的地貌形态,导致在盆地中央形成了独特的与陆坡走向一致的深海峡谷体系——中央峡谷.该峡谷的沉积充填不仅包括来自于西部峡谷头部的浊积水道沉积,还包括来自于北部陆坡的块体流沉积,特别是来自于滑塌型陆坡的块体流沉积.中央峡谷体系构成了西北陆缘区多源汇聚的深水沉积物输送系统,同时也是南海西北陆缘深水区重要的油气储层发育层系.   相似文献   

19.
The Antola Formation of Upper Cretaceous age crops out extensively in the Northern Apennines and consists of graded units of calcareous sandstones, sandstones, marlstones, and shales. It can be subdivided into the Cerreto, Antola Marlstone, Bruggi, and S. Donato Members on the basis of bed thicknesses and percentage of shales. Although the whole formation is interpreted as a deep-sea basin plain deposit, the members constitute lateral facies subdivisions which range from proximal, thick-bedded turbidities that show a prevalence of thinning upward cycles in bed thicknesses to distal turbidites that show predominantly thickening upward cycles and have a high percentage of shale. Repetitive patterns in the lithological sequence of the turbidite association are generally distinctive and are satisfactorily described as first order Markov chains. Only the Antola Marlstone Member has an additional second order Markov property. Imaginary eigenvalues of the transition probability matrices of all but the Bruggi Member demonstrate a strong cyclic character in the lithologic ordering within the formation. The behaviour of the Antola Marlstone and of the Bruggi may reflect the influence of a secondary ophiolitic intra-basinal source of clastics that contributed sandy turbidites and olistostromes. Systematic long-term variations in the sequence of bed thickness development in some sections of the Antola Formation are often subtle and equivocal, and pose special problems in interpretation. Fourier analysis was applied to the task of partitioning fundamental wavelengths from “background noise” introduced by essentially random depositional processes. In all members there is (1) strong short-term wavelength of two to three beds indicative of alternating thin and thick beds and judged to be typical of turbidite sequences; (2) an intermediate wavelength ranging from about five beds (proximal facies), eight beds (distal) to nine beds (very distal), which have both thinning and thickening upward trends, interpreted respectively as valley fill due to shifting talwegs of low density turbidity currents, and to progradational, flat turbidite lobes; (3) a poorly defined long-term wave-length of from thirty to greater than sixty beds that may be related to an unspecified trend in the evolution of the sedimentary basin. Phase angles associated with the coniputed power spectra give indications as to the asymmetry (thickening or thinning upward) or symmetry of the representative units.  相似文献   

20.
Sea floor and shallow seismic data sets of terminal submarine fan lobes can provide excellent planform timeslices of distributive deep‐water systems but commonly only limited information on cross‐sectional architecture. Extensive outcrops in the Tanqua depocentre, south‐west Karoo Basin, provide these three‐dimensional constraints on lithofacies distributions, stacking patterns, depositional geometries and the stratigraphic evolution of submarine lobe deposits at a scale comparable with modern lobe systems. Detailed study (bed‐scale) of a single‐lobe complex (Fan 3) over a 15 km by 8 km area has helped to define a four‐fold hierarchy of depositional elements from bed through to lobe element, lobe and lobe complex. The Fan 3 lobe complex comprises six distinct fine‐grained sandstone packages, interpreted as lobes, which display compensational stacking patterns on a 5 km scale. Between successive lobes are thin‐bedded, very fine‐grained sandstones and siltstones that do not change lithofacies over several kilometres and therefore are identified as a different architectural element. Each lobe is built by many lobe elements, which also display compensational stacking patterns over a kilometre scale. Thickness variations of lobe elements can be extremely abrupt without erosion, particularly in distal areas where isopach maps reveal a finger‐like distal fringe to lobes. Lobe deposits, therefore, are not simple radial sheet‐dominated systems as commonly envisaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号