首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by “down-front” winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE’s velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE’s PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.  相似文献   

2.
A strategy for evaluating a global shallow water model based on aspects of kinetic energy spectra and nonlinear vorticity dynamics is proposed in this study. The kinetic energy spectra and nonlinear vorticity dynamics of a recently developed global shallow water model on an unstructured mesh are evaluated in comparison with the benchmark solutions from a global high-resolution spectral model. The results show that the kinetic energy spectra, the rotational and divergent components, the stationary and transient components, and the nonlinear spectral fluxes of the developed shallow water model agree well with those generated by the reference model. In addition, the influence of different flux operators for transporting the potential vorticity(PV) is assessed specifically. It is indicated that the second-order flux operator leads to a spurious increase in the kinetic energy at the tail of the spectrum, whereas the upwind third-order flux operator does not support this behavior owing to implicit numerical diffusion. Moreover, the nonlinear vorticity dynamics is studied by using colliding modons. It is found that the grid-point model maintains the symmetrical pattern of vortices, and generates similar kinetic energy spectra and nonlinear spectral fluxes to the reference model. The evaluation provides a reference for assessing the shallow water model in terms of nonlinear dynamics, and the developed global shallow water model presents a good example.  相似文献   

3.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   

4.
利用2016年1月1日至31日的FNL资料,对一次极端寒潮天气过程进行了等熵位涡分析。结果表明:高位涡主体由极涡分裂而来,前面低位涡区的阻挡与后侧低位涡大气的北上加强了位涡的经向交换,高位涡空气不断由极地向南输送,使得高位涡主体不断加强维持。高位涡在由北向南移动的同时,也由对流层顶向下输送。此次寒潮过程主要有3股冷空气由上而下发展,位置均在高空急流轴的北侧,最南端的一股下沉气流最旺盛,这是其与高空急流相互作用的结果。强盛的冷空气下沉使得寒潮影响范围触及我国华南地区。随着高位涡的向南向下传输,一方面引起对流层中高层低涡系统迅速发展,当它移到中国东部地区时,东亚大槽迅速加深,使槽后强冷空气迅速向南爆发;另一方面,在高位涡输送的过程中,其后侧有强烈的下沉运动,使得地面冷高压快速发展,导致强寒潮天气的爆发。  相似文献   

5.
In this paper, the potential vorticity structure and inversion of the cyclogenesis over the Yangtze River and Huaihe River valleys during 21 23 June 2003 are investigated with a potential vorticity (PV) framework. The cyclogenesis is manifested by a lower-tropospheric PV anomaly over the Yangtze River and Huaihe River valleys at early stages mainly due to latent heat release, which greatly affects the evolution of the associated lower-tropospheric geopotential height and wind fields as demonstrated by piecewise PV inversion. At later stages, an upper-tropospheric PV anomaly develops, resulting in the growth of ridges over the cyclone in both the upstream and downstream, which provide a favorable background field for the low-level cyclone development. But the effect of a surface thermal anomaly always impedes the development of the cyclone to different extents during this cyclogenesis. It is further demonstrated that the position and the strength of the PV anomaly are closely related to the low-level cyclone development, and the lower-tropospheric PV anomaly seems to constitute the most significant feature, for instance, contributing about 60% to the low-level jet (LLJ).  相似文献   

6.
This paper attempts to resolve the long-standing contradiction between the observed longevity of oceanic vortices and their theoretical instability. Using the model of quasigeostrophic, two-layer ocean, we show that a vortex in the upper layer can be stabilised by a circulation in the lower layer, such that the potential vorticity (PV) there is uniform. It is also argued that the assumption of uniform PV in the ‘passive’ layer corresponds to the fact that most oceanic vortices are shed by frontal currents and are alien to the well-mixed water masses around them.  相似文献   

7.
李侃  徐海明 《大气科学》2012,36(3):607-618
应用日本气象厅1979~2008年的热带气旋资料以及日本25年 (JRA-25) 再分析资料, 本文首先对登陆我国变性加强和变性减弱的两类热带气旋进行了合成对比分析, 发现热带气旋变性后的强度变化与相应的西风带高空槽的强弱有很好的对应关系。然后, 我们选取了2004年登陆我国的热带气旋Haima为研究对象, 通过中尺度模式模拟再现了其登陆后变性演变过程, 采用片段位涡反演方法改变了模式初始高空槽的强度, 研究了高空槽强度的变化对Haima变性过程的影响。研究表明: (1) 高空槽加强 (减弱) 后, Haima移速明显加快 (减慢), 此外深 (浅) 槽对应的Haima变性加强过程中心气压降幅较大 (小); (2) 不同强度的高空槽与Haima相互作用的过程中, 深槽对应的高空急流范围较大, 强度更强, 相应的高空强辐散有利于Haima明显的再发展; (3) 另外深槽对应着较强的高层正位涡带, 正位涡向下伸展诱发低层Haima正位涡明显增长, 从而导致低层锋区的强烈发展和低层气旋的明显加强。  相似文献   

8.
In this paper, an explosive cyclone (EC) that occurred over Northeast China in the spring of 2016 is studied by using 6.7 μm FY satellite water vapor (WV) imagery and NCEP (1°×1°) reanalysis data. Moreover, the evolutions of the upper-level jet stream (ULJ), the vertical motions, and the potential vorticity (PV) are analyzed in detail. Results show that different shapes of the WV image dark zones could reflect different stages of the EC. At the pre-explosion stage, a small dark zone and an S-shaped baroclinic leaf cloud can be found on the WV imagery. Then the dark zone expands and the leaf cloud grows into a comma-shaped cloud at the explosively developing stage. At the post-explosion stage, the dark zone brightens, and the spiral cloud forms. The whole process can be well described by the WV imagery. The dynamic dry band associated with the sinking motion and the ULJ can develop into the dry intrusion later, which is an important signal in forecasting the EC and should be paid attention to when analyzing the WV imagery. Furthermore, the mechanism is also analyzed in detail in this article. EC usually occurs in the left-exit region of the 200-hPa jet and the region ahead of the 500-hPa trough where there is significant positive vorticity advection (PVA). When the EC moves onto the sea surface, the decreased friction would favour the development of the EC. The upper-level PVA, the strong convergence at low level, and the divergence at high levels can maintain the strong updraft. Meanwhile, the high PV zone from the upper levels extends downward, approaching the cyclone. Together, they keep the cyclone deepening continuously.  相似文献   

9.
Considering linearized motion about a resting basic state, we derive analytical solutions of the equatorial β-plane primitive equations under the assumption that the flow is steady in a reference frame moving eastward with a diabatic forcing resembling a Madden–Julian Oscillation (MJO) convective envelope. The solutions are analyzed in terms of potential vorticity (PV) dynamics. Because the diabatic source term for PV contains a factor βy, the diabatic heat source is ineffective at generating a PV anomaly at the equator but maximizes the PV response near the poleward edges of the heat source. In this way a moving heat source can produce two ribbons of lower tropospheric PV anomaly, a positive one off the equator in the northern hemisphere and a negative one off the equator in the southern hemisphere, with oppositely signed PV anomalies in the upper troposphere. Associated with these PV anomalies are geopotential anomalies that are shifted several hundred kilometers poleward. In the lower troposphere these zonally elongated geopotential anomalies resemble ITCZ trough zones, which demonstrates the close connection between the MJO wake dynamics and the formation of double ITCZs.To demonstrate that the MJO wake response can be described by simple PV dynamics, we propose an invertibility principle relating the PV to the streamfunction, which in turn is locally related to the geopotential. This equatorial invertibility principle accurately recovers the balanced wind and mass fields found in the MJO wake in the primitive equation model. However, while the invertibility principle highlights the ability of simple PV dynamics to accurately describe the flow in the wake of an MJO convective envelope, it also clearly illustrates the inability of such dynamics to describe the Kelvin-like flow pattern ahead of the convection.  相似文献   

10.
陶祖钰  周小刚  郑永光 《气象》2012,38(1):28-40
由于从等熵位涡分析引申出来的平流层干侵入(以下简称干侵入)概念造成了当前天气预报思路中一些混乱和违背天气学常识的看法,文中回顾了天气预报原理从着眼气压变化到着眼涡度变化的发展历史和位涡问题的缘起。进而根据位涡的定义、数学表达式、物理意义,并结合实例的计算结果指出,位涡的大小主要取决于位温的垂直梯度;等熵面上的位涡分布形势实质是对流层顶高度的分布,因此可以间接反映极地气团、锋、高空槽和高空急流的形势。轨迹计算和数值预报都证明,低空的高位涡异常是地面气旋强烈加深和潜热反馈的结果,而不是干侵入的结果。指出位涡的守恒性不能替代斜压扰动发展的动力学机理;干侵入的错误概念来源于对位涡守恒性的绝对化和简单的推断,并犯了流体力学原理上混淆流线和轨迹两个不同概念的错误。  相似文献   

11.
夏季风系统影响下广西锋面型强暴雨动力及水汽输送特征   总被引:3,自引:5,他引:3  
利用日本气象研究所高分辨TBB资料、美国环境预测中心(NCEP)再分析资料,对1980~2002年主汛期(5~7月)夏季风系统影响下的广西13次锋面型大范围暴雨过程,采用合成分析与个例探讨的方法,分析了暴雨期间东亚夏季风各系统(高空急流、低空急流、南亚高压等系统)的演变特点和强暴雨的动力及水汽特征。结果表明:大范围暴雨发生时,广西位于高空急流出口右侧正散度区和500 hPa强上升区内,同时还位于低空急流的左侧,高低空急流耦合是暴雨触发机制;对湿位涡的分析表明,当700 hPa附近的湿位涡垂直分量小于0同时湿位涡在等压面上的垂直分量大于0时较易产生大暴雨。  相似文献   

12.
采用NCEP/NCAR再分析资料对2005年台风海棠影响河南所造成的三个阶-RCS区域性暴雨进行位涡分析,揭示了此次台风暴雨产生的机制。结果表明:台风海棠低压环流呈现为高位涡结构。它造成的河南第一个阶段强降水是在台风东北部的东南急流南侧产生的;第二和第三个阶段是由于台风到达较高纬度后,与西风带高位涡冷空气相互作用而产生的远距离暴雨。同时,高空西风急流的南移有利于高位涡的向南输送,对于暴雨的增幅具有促进作用。  相似文献   

13.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   

14.
Summary The present observational study addresses the role of dynamic and diabatic processes leading to the generation of four deep upper-level troughs/cut-offs, involved in two extreme precipitation episodes over West Africa during the cool season. The elongated potential vorticity (PV) streamers associated with the observed troughs form as a result of an equatorward transport of high-PV air downstream of a large ridge over the central North Atlantic. Strong deformation along the eastern side of the ridge leads to a thinning of the PV streamers. In some situations the tips of the streamers break up and form distinct and long-lived stationary cut-offs near West Africa, in particular if the presence of another PV ridge downstream allows a complete isolation from the midlatitude westerlies. In other situations a prior anticyclonic wave-breaking event over Europe leads to an advection of high-PV towards the Iberian Peninsula that merges with the streamer and impedes a complete cut-off. The observations presented here suggest that the rapid amplification of the PV ridges over the North Atlantic and thus the subsequent streamer formation are related to upstream latent heating through non-conservative diabatic reduction of upper-level PV and through the strong divergent outflow near the tropopause that support large negative isentropic PV advection. The intense latent heat release is promoted by cyclo- and frontogenesis, and the transport of warm, moist air by a low-level jet ahead of the surface cold front (often called a warm conveyor belt; WCB). Diabatic PV tendencies are highest where the WCB rises over the surface warm front to the northeast or east of the cyclone centre. In most cases the distinct heating occurs in connection with a strong upper-level jet and a rapid deepening of the involved surface cyclone. More quantitative dynamical and statistical studies of the suggested relation are needed to better understand the relative contributions of single factors to the large and synoptic scale evolution that leads to PV streamers/cut-offs near West Africa.  相似文献   

15.
The heavy rainfall caused by interactions between the monsoon depression and the middle-latitude systems in Australia has been investigated in this paper. For a better understanding of the Australian monsoon depression (AMD) and its synoptic-scale interaction with the middle-latitude systems, some key meteorological parameters have been calculated, including the vorticity budget, moisture budget, temperature advection, frontogenesis function and potential vorticity. The results show that interaction between the lower and mid-latitude systems does exist leading to the merging of the extratropical low with frontal systems and the AMD, meanwhile both the low-level cold air from the mid-latitude and the warm moist air that was lifted by the front were very favorable for the formation and the intensification of heavy rainfall, which was quite different from the rainfall caused by the AMD alone. Second, the obvious temperature advection and gradient were detected, so the baroclinicity was favorable to the intensification of the front, as well as to the development of the upper-level jet. Next, isentropic analysis revealed that the south-west cold-flow sank and met the warm flow coming from the northern part of Australia, thereby forming the obvious baroclinic zone in the lower troposphere. A high-PV anomaly area located in the upper level of the troposphere, which overlaid the low-level frontogenesis zone, also existed. The upper-level PV maximum extended downwards forming a vertical PV column when the extratropical low intensified. Furthermore, the AMD is a warm-cored vortex located in middle and upper troposphere with a deep and thick moisture layer, and there were some differences in the vorticity and moisture budgets of the two different stages. Finally, based on the above-mentioned analysis, a conceptual model describing the interactions between the lower and middle-latitude systems in the southern hemisphere was proposed.  相似文献   

16.
The severe bora case that lasted from 13 to 15 November 2004 has been selected for the analysis of the bora of Pag’s ribs, which occurs in the northern part of the eastern Adriatic coast over the Pag island area (Croatia). According to the measurements from automatic stations, the MM5 numerical model is successful in the 10-min mean wind speed prediction at 10-m height. The vertical analysis of the wind speed and potential temperature also gave satisfactory results. At the commencement of the bora the modelled wind had a magnitude of 20ms−1 at 10-m height in the Pag island area, which sharply attenuated in the cross direction and to the open sea. In this way the model has proved successful in predicting the characteristics of the bora of Pag’s ribs. Potential vorticity (PV) at 600m has lower values within PV banners than during the developed bora. The consequence is a strong jet emanating from the nearest gap. The vertical cross-sections through the centre of the gap point out a permanent hydraulic-like flow. At the time of the bora of Pag’s ribs the highest modelled turbulent kinetic energy is found in the jump-like region above the inversion and within the boundary layer along the lower boundary, ranging from 6–8m2 s−2. It is concluded that the dissipation in the hydraulic jumps and the wave breaking regions are the reasons for PV generation.  相似文献   

17.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   

18.
青藏高原横切变线(简称切变线)是引发青藏高原夏季暴雨的主要天气系统之一。本文基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,简称ECMWF)提供的ERA-5再分析资料,选取14个生成于6~8月、生命史为38小时且引发高原暴雨的切变线个例进行合成分析,探究动力和热力作用对夏季切变线生成和强度演变的影响。结果表明:(1)500 hPa切变线生成于伊朗高压和西太平洋副热带高压两高之间的鞍形场中,处于580 dagpm闭合低值中心和272 K高温中心内,比湿大值区的北侧;200 hPa南亚高压北部边缘、西风急流入口区南侧。(2)切变线强度表现出明显的日变化特征,在当地时间(LT=UTC+6h)23时最强,13时最弱。(3)涡度收支诊断表明,青藏高原上空高低层散度变化对切变线强度变化具有指示意义,500 hPa涡度最大值(最小值)出现时间滞后于辐合作用最大值(最小值)3小时。(4)切变线演变过程中,切变线发展时位涡随之增大。位涡收支诊断表明,青藏高原上空的水汽和非绝热加热对切变线的生成和发展演变起到重要作用。当边界层感热加热增强时,低层辐合增强,上升运动增强,在充足的水汽配合下,凝结潜热释放使非绝热加热中心抬高至大气中层,从而有利于切变线生成及发展。  相似文献   

19.
Abstract

The effects of condensational heating on the semi‐geostrophic dynamics of frontogenesis are studied using a two‐dimensional deformation model. The model includes water vapour and allows the formation of stratiform clouds. Analysis and numerical results show that heating due to stratiform clouds has the effect of reducing stability to slantwise convection, as found in previous studies (Thorpe and Emanuel, 1985). In addition, heating‐induced potential vorticity and temperature anomalies play a very important role in the frontal circulation. The ageostrophic flow induced by these anomalies tends to reinforce the effect of heating and increases the strength of frontal cloud. The model is also able to produce the low‐level jet maximum ahead of a cold front at an elevated level, in agreement with observations, owing to the explicit condensation scheme used in the model.  相似文献   

20.
采用常规观测资料、地面加密观测资料、逐时云顶亮温TBB资料和1°×1°NCEP/NCAR再分析资料,对2013年7月8~11日四川盆地持续性暴雨天气过程的中尺度对流系统活动及其发生发展的物理机制进行了分析。结果表明:(1)暴雨过程发生在对流层中层中高纬度两槽一脊稳定维持的环流背景下,由活跃的高原低值系统以及异常稳定的副高西侧偏南气流配合低层冷空气作用造成。(2)极端降水过程分为暖区强对流性降水和相对稳定的锋面降水两个阶段;暖区对流性降水阶段,偏南暖湿气流源源不断向盆地输送水汽和能量,为暴雨发生提供了高能高湿条件,大气层结极不稳定,中尺度对流云团发展旺盛;锋面降水阶段层结趋于稳定,对流云团有所减弱,但仍有充足的水汽输送且降水云系稳定少动,致使盆地西部产生持续性降水。(3)500h Pa高原低槽前的正涡度平流诱发盆地西部低层气旋性涡度增加、低涡生成和发展,致使暖湿气流持续在盆地西部形成辐合上升,为暴雨的维持提供了很好的动力条件,两个降水阶段均为明显的低层辐合高层辐散的特征,暖区对流性降水阶段正涡度发展较锋面降水阶段更强。(4)青藏高原东侧的地形作用强迫气流在盆地西部强烈辐合上升,使得暖湿水汽更加有效率地形成降水,是此次极端强降水天气出现的一个重要动力因素。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号