首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用ERA5 0.25°×0.25°再分析资料、MICAPS4的常规资料以及四川加密自动站逐时降水观测资料,对2020年8月11~13日和15~18日发生在四川盆地西部的两次极端暴雨过程的广义位温和广义湿位涡进行诊断分析。结果表明:两次暴雨过程均属于500 hPa“东高西低”型暴雨,中高层南亚高压、高空急流、西风槽和低层切变线、低涡等天气系统是两次暴雨有利的动力条件,低空急流则是暴雨区良好的水汽条件。两次过程暴雨区上空均存在强广义位温梯度区和强广义湿位涡异常区,“8.11”暴雨出现高度为800~900 hPa,“8.15”暴雨出现高度为700~800 hPa,这种分布与低层相对湿度含量密切相关,即相对湿度越高,广义位温垂直梯度越强,广义湿位涡异常区中心值越高。两次暴雨的强降水站点广义位温和广义湿位涡的时空演变和降水的时间演变均有较好的对应关系,但广义湿位涡强度与小时雨强并不存在明显的正相关关系。   相似文献   

2.
“99.5.7”昆明大暴雨分析   总被引:3,自引:8,他引:3  
利用GMS-5卫星云图、常规历史资料和T106资料,通过湿位涡、螺旋度、湿Q矢量及散度、锋生函数等理论,对1999年5月7日昆明大暴雨进行诊断分析,并从影响系统及热能条件与1986年6月7日的昆明大暴雨对比,结果表明:在昆明春季连续几次冷空气影响下,由于西南急流的建立,在冷空气的协同作用下,也能造成大暴雨天气。昆明处于200 hPa高空急流右侧,700 hPa低空急流左前侧;物理机制上,云南处于湿舌区内,昆明700 hPa湿位涡经历了由MPV1大于0、MPV2小于0到MPV1小于0、MPV2大于0的转换。昆明大暴雨出现在:①MPV2小于0等值线密集区的南部;②700hPa垂直螺旋度正值中心南部;③湿Q矢量辐合及散度负值中心处。  相似文献   

3.
利用Micaps常规气象资料、贵州省自动站资料、NCEP/NCAR资料和FY-2E卫星TBB资料对2012年6月25—26日贵州地区的暴雨过程进行了分析。结果表明:此次暴雨是受到500 hPa西风槽,700 hPa西南低涡和高低空急流的影响,暴雨落区主要位于500 hPa西风槽附近的上升区,西南低涡中心的东南侧,低空急流的北边和高空急流南边。暴雨发生所需的丰富水汽主要来源于南海,其次东海和孟加拉湾也有贡献,水汽辐合中心与强对流云团有很好的对应。垂直螺旋度的分析表明其与雨强中心有很好的对应关系,雨强中心位于中低层的垂直螺旋度正值中心的附近以及其东北侧。而湿位涡的分析表明本次暴雨的发生与暴雨落区北侧中高层"干入侵"有关,暴雨区低层存在着对流不稳定。  相似文献   

4.
华南前汛期大范围暴雨的合成分析   总被引:1,自引:1,他引:1  
利用多时间尺度NCEP/NCAP再分析资料、TBB资料,通过合成分析、动力诊断等方法,对华南大范围暴雨高低空共同特征进行了探讨,得出:华南暴雨区位于200hPa高空急流入口的右侧,高空辐散中心区下方,同时位于200hPa南亚高压北缘和中纬度脊前辐射气流中。对于低层而言,暴雨区位于850hPa低空急流轴的左侧。  相似文献   

5.
利用常规气象资料及T213分析场资料,对2005年6月18日~23日华南大范围持续性暴雨过程的高低空形势、能量及动力条件进行诊断分析。发现:这次过程低空急流维持了低空对流不稳定形势,高空急流维持了高空辐散、低空辐合的有利形势,高空西南急流与高空西北急流一样,能造成暴雨区高空有利的辐散形势,形成高层辐散、底层辐合,触发强烈的上升运动,高低空耦合是此次强降雨爆发的重要机制,强降雨落区位于低空西南风急流出口区的左侧和200hPa西北风急流的出口区西南侧,即低空急流的左侧与切变线的前沿;暴雨区域高湿能条件的维持,保证了强降雨过程的能量供给,是强降雨持续的重要条件。  相似文献   

6.
陕西中南部一次突发性大暴雨过程分析   总被引:17,自引:1,他引:16  
利用常规观测资料、陕西地面加密观测资料、FY2-2C卫星TBB资料,对2007年8月8-9日陕西中南部突发性大暴雨过程进行了诊断分析.结果表明:500hPa中尺度切变线、700hPa低涡是这次暴雨的主要影响系统,MCC是造成此次暴雨的直接原因.暴雨的发生发展与湿位涡的时空演变有很好的对应关系,湿位涡"正负区叠加"的配置是暴雨发展的有利形势.暴雨区发生在700hPa湿位涡正压项的零线附近及负值区等值线密集区中,700hPa低涡东侧的强辐合区与200hPa西北风高空急流右侧的强辐散区叠置,为暴雨区提供了持续强劲的上升运动.  相似文献   

7.
利用常规观测资料和NCEP 1°×1°再分析资料,对2009年11月10 11日华北中南部大范围暴雪过程进行了分析。结果表明:(1)这次大暴雪发生在500 hPa高空槽、700 hPa低涡切变线及河套锢囚锋共同配合的天气系统下。(2)暴雪区位于200 hPa极锋急流入口区的右后方和副热带急流出口区的左前方、700 hPa西南急流的左前方、925 hPa和850 hPa偏东急流的右前方。(3)不同高度的急流共同作用形成这次大范围的暴雪天气过程。低空急流是在高空急流的耦合下形成和发展的。容易耦合的区域是在高空急流入口区右侧或在高空急流出口区左侧,正涡度平流随高度增大的区域。(4)西南急流为暴雪区提供充足的水汽并在暴雪区形成高湿区,从而建立和维持了暴雪区上空的对流不稳定层结。(5)西南急流与偏北急流在暴雪区上空形成辐合,在暴雪区上空产生抬升作用。(6)高、低空急流耦合所形成的次级环流,增加了上升运动并触发不稳定能量的释放,增加了暴雪强度和持续时间。(7)925 hPa东风急流在暴雪区的边界层形成了干冷空气垫,有利于偏南暖湿气流的爬升,加强了动力抬升作用。  相似文献   

8.
华北暴雪过程中的急流特征分析   总被引:2,自引:0,他引:2  
利用常规观测资料和NCEP 1°×1°再分析资料,对2009年11月10 11日华北中南部大范围暴雪过程进行了分析。结果表明:(1)这次大暴雪发生在500 hPa高空槽、700 hPa低涡切变线及河套锢囚锋共同配合的天气系统下。(2)暴雪区位于200 hPa极锋急流入口区的右后方和副热带急流出口区的左前方、700 hPa西南急流的左前方、925 hPa和850 hPa偏东急流的右前方。(3)不同高度的急流共同作用形成这次大范围的暴雪天气过程。低空急流是在高空急流的耦合下形成和发展的。容易耦合的区域是在高空急流入口区右侧或在高空急流出口区左侧,正涡度平流随高度增大的区域。(4)西南急流为暴雪区提供充足的水汽并在暴雪区形成高湿区,从而建立和维持了暴雪区上空的对流不稳定层结。(5)西南急流与偏北急流在暴雪区上空形成辐合,在暴雪区上空产生抬升作用。(6)高、低空急流耦合所形成的次级环流,增加了上升运动并触发不稳定能量的释放,增加了暴雪强度和持续时间。(7)925 hPa东风急流在暴雪区的边界层形成了干冷空气垫,有利于偏南暖湿气流的爬升,加强了动力抬升作用。  相似文献   

9.
利用T213资料对2004年5月15—16日浙江大范围暴雨进行分析,并用浙江省气象台本地化MM5进行了数值模拟试验,发现高空辐散与低空辐合同时存在,但低空辐合程度强于高空辐散程度。低空的急流中心与强暴雨中心有着非常好的对应关系,850hPa正涡度区与暴雨区也相配合。本地化MM5数值预报模拟结果显示其降水强度和落区预报都非常好,显示其有较好的一种预报前景。  相似文献   

10.
2005年6月华南持续性暴雨爆发和维持机制分析   总被引:7,自引:0,他引:7  
利用常规气象资料及T213分析场资料,对2005年6月18日~23日华南大范围持续性暴雨过程的高低空形势、能量及动力条件进行诊断分析。发现:这次过程低空急流维持了低空对流不稳定形势,高空急流维持了高空辐散、低空辐合的有利形势,高空西南急流与高空西北急流一样,能造成暴雨区高空有利的辐散形势,形成高层辐散、底层辐合,触发强烈的上升运动,高低空耦合是此次强降雨爆发的熏要机制,强降雨落区位于低空西南风急流出口区的左侧和200hPa西北风急流的出口区西南侧,即低空急流的左侧与切变线的前沿;暴雨区域高湿能条件的维持.保证了强降雨过程的能量供给,是强降雨持续的重要条件。  相似文献   

11.
利用常规气象观测资料和NCEP 2.5°×2.5°再分析资料,选取1991年7月9日、1998年7月21日、2010年7月8日湖北省梅雨期的三次大暴雨过程,对影响三次暴雨天气背景以及暴雨发生所需的动力、水汽、热力条件进行诊断分析。试图总结这类区域性暴雨的预报着眼点。结果表明:三次过程的高、低空急流的位置,水汽输送路径有一定相似性;影响三次过程的中尺度系统为西南涡-切变线。850 hPa正涡度中心、水汽通量散度中心与暴雨落区有较好对应,反映了中低层风的辐合和垂直上升运动有利于降水的维持。三次过程暴雨区域700 hPa湿正压项和斜压项绝对值之和均在0.5~0.6 PVU之间,柱状的水汽饱和区均延伸至500 hPa以上;此类暴雨的预报着眼点为:西南涡-切变线以及低空急流的位置是暴雨落区预报的重点,低层的涡度、水汽通量散度、假相当位温高能舌,以及大气运动的垂直结构对暴雨落区预报有较好的参考价值。  相似文献   

12.
利用常规气象观测资料、NCEP再分析资料、ERA5分析场数据等资料,对南疆西部两次极端暴雨过程的环境条件和形成机理进行对比分析,以更深入理解南疆极端降水特征和产生机制。两次过程分别发生在春季和夏季,高层环流存在显著差异,南亚高压分别呈东部型和双体型,但配合中层的“阶梯槽”形势,均为极端降水提供了特殊有利的环流背景。低空700~850 hPa偏东急流是南疆西部极端降水发生的重要天气系统,其不但是暴雨发生地主要水汽通道,还与地形形成强烈辐合,是极端降水重要的触发和水汽集中机制。引入二阶湿位涡对两次暴雨过程的非均匀特征及可能产生机制进行了对比分析。结果表明,二阶湿位涡高值区与降水的发展演变呈现较高一致性,二阶湿位涡主分量包含对流稳定度与绝对涡度垂直梯度的耦合,体现极端降水大气的主要动热力结构特点:发生在2021年6月15~16日的夏季过程,极端降水区主要位于昆仑山沿线,与塔里木盆地南侧强烈的低层气旋性旋转有关,旋转促进水汽快速集中,垂直方向表现为中层负涡度叠加于正涡度之上,垂直涡度梯度显著,同时水汽抬升凝结,中层大气加湿加热,对流稳定度在垂直方向非均匀性增强,两种垂直梯度结构均有助于垂直运动增强,促进极端降水形成;发生在2020年4月17~24日的春季过程,降水主要位于南疆西部喇叭口地形区,“阶梯槽”形势造成的越山干冷气流和塔里木盆地的偏东暖湿气流辐合,形成中层正涡度带,激发上升运动,是极端降水的主要成因。  相似文献   

13.
山东省春秋季暴雨天气的环流特征和形成机制初探   总被引:7,自引:2,他引:7       下载免费PDF全文
对山东省春秋季暴雨的气候特征和影响系统进行了分析, 制作了春秋季暴雨的平均环流形势图。分析了2003年春秋季两次大范围暴雨的环流特征和影响系统及暴雨期间大气的热力特征和水汽输送特征, 应用k-螺旋度和倾斜涡度发展理论, 分析了暴雨的形成机制。结果表明:4月暴雨均受气旋影响, 10月暴雨以冷锋影响居多。2003年4月17—18日为气旋暴雨, 10月10—12日为切变线冷锋暴雨。两次暴雨前都有低空偏南风急流向暴雨区输送水汽, 大气强烈增温增湿, 对流不稳定度增大, 湿斜压性增强。强冷锋南下触发对流不稳定能量释放, 产生暴雨。暴雨期间低层正k-螺旋度猛烈发展。暴雨前期中低层MPV1 < 0且MPV2 > 0, 冷锋影响期间MPV1 > 0且MPV2 < 0, 都有利于倾斜涡度发展, 增强了上升运动。  相似文献   

14.
山东省2006年4月28日飑线天气过程分析   总被引:1,自引:3,他引:1       下载免费PDF全文
对2006年4月28日山东省一次飑线天气过程进行诊断分析,应用湿位涡守恒理论研究了飑线的发展机制。结果表明:飑线是由500hPa西风槽影响产生的,为低层增温增湿,高层冷空气南下,低能舌叠加在高能舌之上,导致大气对流性不稳定。850hPa切变线和地面低压槽中的辐合上升运动触发对流不稳定能量释放,产生中尺度对流云团,在热力不稳定和风垂直切变的环境条件下对流云团东移发展,形成飑线。低层大气湿斜压性增强,破坏了地转平衡,倾斜涡度发展,上升运动增强,对流发展;高空高位势涡度下传使得中低层位势涡度增大,导致其垂直涡度增大,有利于对流层低层中尺度涡旋发展,对流增强。较强的上升运动与风垂直切变相互作用,促使对流系统发展形成飑线,产生雷雨大风。  相似文献   

15.
NCEP-NCAR reanalysis data were used to analyze the characteristics and evolution mechanism of convective and symmetric instability before and during a heavy rainfall event that occurred in Beijing on 21 July 2012.Approximately twelve hours before the rainstorm,the atmosphere was mainly dominated by convective instability in the lower level of 900-800 hPa.The strong southwesterly low-level jet conveyed the moist and warm airflow continuously to the area of torrential rain,maintaining and enhancing the unstable energy.When the precipitation occurred,unstable energy was released and the convective instability weakened.Meanwhile,due to the baroclinicity enhancement in the atmosphere,the symmetric instability strengthened,maintaining and promoting the subsequent torrential rain.Deriving the convective instability tendency equation demonstrated that the barotropic component of potential divergence and the advection term played a major role in enhancing the convective instability before the rainstorm.Analysis of the tendency equation of moist potential vorticity showed that the coupled term of vertical vorticity and the baroclinic component of potential divergence was the primary factor influencing the development of symmetric instability during the precipitation.Comparing the effects of these factors on convective instability and symmetric instability showed some correlation.  相似文献   

16.
为了更加深入地了解暴雨中尺度系统,利用风廓线雷达资料,对2012—2014年发生在广东前汛期的短时强降水的暴雨过程临近时次的低空急流强度、低空急流高度、低空急流指数以及各层垂直风切变等物理量进行了分析研究。研究结果表明:(1)在广东前汛期,86%的暴雨过程都会有短时强降水的出现; (2)2 km高度以下最大风速呈正态分布特征,主要集中在10~21 m/s之间,60%以上的强降水发生前3小时低空急流便已经存在,且随着强降水的临近,低空急流的比例逐渐增大,超过80%的过程强降水出现时有低空急流相配合; (3)暴雨发生前低空急流强度基本维持,最低高度逐渐降低。强降水出现时次,低空急流表现出逐渐加强的特征,最低高度也明显下降,从而导致低空急流指数I增大; (4)地面到不同等压面的垂直风切变随着高度的增加而逐渐减小,其中强降水发生时地面到925 hPa垂直风切变相较于暴雨发生前有所增大,而地面到850 hPa及700 hPa垂直风切变在强降水发生时则表现出下降的特征; (5)选取暴雨发生前各类物理量的中值作为暴雨发生的阈值,则低空急流强度在13.5 m/s左右,最低高度为1 km左右,低空急流指数I为6×10-3 s-1左右,地面到925 hPa、850 hPa以及700 hPa之间的垂直风切变分别在7.3×10-3 s-1、6×10-3 s-1以及4×10-3 s-1左右。   相似文献   

17.
利用常规观测资料和NCEP 1°×1°再分析资料,通过对发生在江苏的三次不同量级的区域性暴雪、大雪和中雪过程典型个例进行对比分析,发现降雪时,700hPa低空急流的位置和强度是影响降雪量级的主要因素之一;降雪区上空涡度的垂直分布遵循低层负涡度、中层正涡度和高层负涡度的配置,暴雪时正涡度强且正涡度区最为深厚,动力抬升作用强,中雪发生时正涡度区相对最为浅薄,不利于形成强辐合抬升,动力抬升作用弱。且暴雪和大雪发生时基本上整层都为垂直螺旋度正值区,中雪时没有出现明显的正值区;暴雪和大雪过程时中低层都具有明显的逆温层,中高层西南急流造成的对流层中层的爆发性增温是逆温层形成的关键,中雪发生时不一定有逆温层结;降雪强度与湿位涡分量绝对值存在一定的正相关关系。  相似文献   

18.
利用自动气象站雨量资料、MICAPS4调阅资料以及NCEP再分析资料,对比分析了2016年8月21日和2018年7月22日宁夏贺兰山东麓两次局地暴雨过程的降水特征、环流形势等,重点对两次过程的湿位涡场进行了诊断分析。结果表明:两次暴雨过程第一阶段均为暖区降水,表现出降水范围小、时间短、强度大,相对第一阶段降水,第二阶段降水范围较大、雨强较小。两次过程强降水均发生在假相当位温(θse)等值线密集区,并沿低空急流轴呈长条状分布,强降水时段与θse最大值出现时间相一致。暴雨区位于位涡(PV)负值中心区附近,暴雨发生发展过程与PV负值中心的移动和变化较为一致,PV负值中心的加强和减弱以及移动方向对局地暴雨的预报有很好的指示意义。对流层500 hPa以上湿位涡正压项(MPV1)正的大值区对应700 hPa以下负的大值区,正负中心区垂直叠加的配置有利于暴雨发生发展。垂直剖面图上600 hPa都存在湿位涡斜压项(MPV2)负极值中心,对流层中低层MPV2负极值中心的强度和维持时间以及变化对局地暴雨的预报有一定的指示作用。  相似文献   

19.
利用NCEP再分析资料对2009年3月20日夜至21日凌晨豫北强对流天气过程进行了分析,结果表明:①导致这次强对流天气发生的湿位涡场分布特征为,对流层低层MPV1〉0,同时MPV2〈0;强对流发生时,对流高层表现为MPV1〉0,同时MPV2〈0,即高低层均为异常的湿对流稳定区。②强对流的发生发展与湿位涡的时空演变有着很好的对应关系,对流层高低层湿位涡“正负区垂直叠加”的配置是强对流天气发展的有利形势。这次强对流天气发生在低层湿位涡正压项等值线密集的零线附近以及大于零的区域和湿位涡斜压项的负值区,同时高层为湿位涡正压项等值线密集正值区域和湿位涡斜压项的负值区。③中低层急流和地面东路冷空气入侵高温高湿不稳定区是形成这次强对流天气的主要原因,中尺度对流云团是造成此次强对流天气的直接影响系统,且强对流发生前,近地面存在逆温层。  相似文献   

20.
动力因子对地形影响下的四川暴雨落区的诊断分析   总被引:4,自引:1,他引:3  
王成鑫  高守亭  梁莉  马严枝 《大气科学》2013,37(5):1099-1110
本文分析了2010年7月16~18日地形作用下四川盆地的一次持续性暴雨过程,指出此次暴雨过程是在高低层系统配置较好的情况下发生的。并以NCEP资料为初值场对此次暴雨过程进行了数值模拟,结合实况对模拟结果进行对比分析。分析表明:模式对本次四川暴雨过程的模拟较为成功,能很好地再现此次暴雨的降水落区以及强降水中心。运用广义湿位温、广义对流涡度矢量垂直分量的垂直积分和质量垂直螺旋度对受大巴山脉影响的四川东北部的暴雨落区进行了诊断分析。分析指出,广义湿位温纬向平均的垂直剖面图上,等湿位温线的倒Ω区域与四川东北部的强降水落区吻合较好,等湿位温线的倾斜程度以及湿位温异常的高度可以定性地指示降水的强弱;对广义湿位温从800 hPa到500 hPa垂直积分,用得到的湿位温的水平分布来指示东北部的暴雨落区效果较 好;用改进垂直积分区间后的广义对流涡度矢量垂直分量比用传统的对流涡度矢量垂直分量来示踪四川东北部的暴雨落区效果更好;质量垂直螺旋度能有效刻画出四川东北部地区强降水系统的典型动力场垂直结构,因此与四川东北部的地面强降水具有很好的对应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号