首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
库姆塔格沙漠周边地区极端降水的时空变化特征   总被引:1,自引:1,他引:0  
根据中国气象局信息中心提供的库姆塔格沙漠周边地区20个气象站1960-2014年逐日降水量资料,分析了库姆塔格沙漠周边地区1960-2014年极端降水的时空变化特征。结果表明:(1)库姆塔格沙漠周边地区极端降水主要集中在夏季且存在很大的地域性差异。(2)1960-2014年库姆塔格沙漠周边地区极端降水事件、年大雨频次、年大降水事件降水量和年降水量显著增加。(3)库姆塔格沙漠周边地区西部极端降水主要由频数很少的暴雨贡献,而东部极端降水则由暴雨和大雨共同贡献。(4)库姆塔格沙漠周边地区极端降水指数在夏季和年尺度的空间分布相似,且强降水指数在年和夏季尺度的空间分布均呈“鞍型场”型。  相似文献   

2.
利用石羊河流域2009-2013年主汛期(6-8月)有完整资料的32个区域气象站和5个自动气象站共37个站点逐时降水资料,运用常规的气候统计方法,采用逐时降水量、逐时降水频次、逐时降水强度和不同持续时间降水4个指标对石羊河流域主汛期降水日变化特征进行了研究。结果表明:石羊河流域主汛期降水总量及日数的空间分布总体上与其地理位置、海拔、纬度以及影响系统密切相关,表现为自上游向下游呈递减趋势,降水强度空间分布较复杂。石羊河流域主汛期小时降水量、降水频次及降水强度呈三峰型分布,主要集中出现在20:00-23:00、01:00-09:00、14:00-20:00,其中强降水呈现双峰分布,基本都出现在20:00-23:00、14:00-20:00;石羊河流域主汛期持续1~3 h短时降水的降水量和降水次数大于持续10 h以上降水过程的降水量和降水次数,且持续1~6 h的短时降水多发于午后到傍晚,持续时间超过6 h的长持续性降水的最大降水量通常出现在夜晚-凌晨和午后-傍晚。  相似文献   

3.
姜旭  赵光平 《中国沙漠》2013,33(3):888-895
利用中国西北地区东部61个气象站1960-2009年逐日降水资料,分析了雨日数的演变特征。研究发现:200 mm年降水量等值线的两侧存在明显差异,南部半干旱区处于夏季风北部边缘地带,受季风影响,雨日数年际波动大;北部干旱区年雨日数较少且相对稳定。在气旋性风切变辨识算法支持下,本文运用NCEP全球再分析资料风场资料,研究了近50年西北地区东部低空气旋性风切变的演变特征。分析发现,雨日数和低空气旋性风场切变数存在较为显著的正相关,但这种相关性存在明显的季节差异,秋、冬、春3季相关显著,夏季较差。进一步研究发现:水汽条件在雨日数和低空气旋性风切变的关系中起着重要的作用,特别在春、夏两季影响更为明显;秋季青藏高原北部绕流水汽输送带的强弱也直接决定低空气旋性风切变和雨日数的相关性的高低。  相似文献   

4.
西藏拉萨达孜夏季降水日变化特征   总被引:1,自引:0,他引:1  
利用西藏自治区拉萨市达孜县2014—2015年夏季逐时降水数据,研究达孜县日降水量、降水频次、降水强度以及不同持续时间降水等指标。结果表明:降水主要集中于晚上,尤其是后半夜,白天降水较少。降水量最多的时段为1:00—7:00,降水次多时间段为19:00—23:00,降水量最少的时段为12:00—18:00,降水量最大值出现在凌晨4:00,而最少为午后13:00;降水最易发生于21:00至次日9:00,最不容易产生降水的时间段为13:00—17:00,降水次数最多时间为凌晨4:00,与降雨量最大值出现的时刻相吻合;降水强度最大时段为20:00—22:00和1:00—7:00,降水强度最大值出现在21:00,其次为22:00,最小值则出现在13:00;降水量与降水频次以及降水强度均呈显著的正相关,降水量的变化受降水频次影响程度较降水强度的大;达孜县夏季降雨以短时间段的降水为主,短时降水频次比长持续时间降水次数多,且短时降水对总降水量的贡献大于较长时间的降水。  相似文献   

5.
近年来由于降水异常所带来的干旱、城市内涝等气象灾害越来越受到人们的关注.采用回归方法对昆明12个大监站近43年来的降水量时空变化特征进行分析,发现昆明地区年降水量减少,春、夏、秋的降水也减少,但冬季降水略增加;年、四季降水有较为明显年代际变化趋势,且存在一个或多个突变点.降水量变化具有一定的区域分布特征,市区及以东以南地区夏季及年降水量偏少显著,春季降水西北部地区偏多其余偏少,秋季降水为一致减少型,冬季降水西南部减少其余大部持平或略增加.  相似文献   

6.
李芬  张建新  张荣 《中国沙漠》2015,35(5):1301-1311
受全球变化的影响,1958-2013年山西的气候呈现了新的变化特点。基于38个气象站最新气候资料,应用线性倾向估计、均值分布和EOF等方法,研究了山西降水的变化特征。结果表明:(1)山西年降水量平均为494.9 mm;年降水量382.8~637.2 mm,呈下降趋势,与全国降水的变化趋势一致,但下降幅度为12.6 mm/10a,显著高于全国水平。(2)春、夏、秋、冬季平均降水量分别为77.6、290.5、114.3、13.0 mm,除冬季平均降水量略微增加外,其他季节均呈下降趋势,这与华北地区一致。(3)春、夏季和冬季降水量年代际特征明显,但各有不同,春冬大部分时段波动为反向特征,近年来逐渐趋于同向;夏季是在显著下降趋势上叠加了年代际变化,且下降幅度最大达9.8 mm/10a;冬季波动最为剧烈,降水量1.1~28.3 mm,最多年是最少年的24.7倍。(4)年及四季降水的总体一致性是山西降水变化的主导特征,近56年大部分年及其四季降水都表现出一致的偏旱或偏涝,但高荷载区具有一定的区域性特点,年降水位于中东部、春季降水位于中南部、夏、秋、冬季降水位于南部。(5)年和夏季降水EOF分解各模态的收敛速度较慢,第一模态的方差贡献分别为33%和49%,前3个模态累计方差贡献分别为69%和70%;春、秋季和冬季EOF分解各模态收敛速度较快,第一模态的方差贡献分别高达65%、62%和74%,前3个模态累计方差贡献分别达到81%、84%和86%。  相似文献   

7.
 利用宁夏气象台站1961-2010年逐侯降水量序列资料,研究了表征降水量时间分配特征的降水集中度(PCD)和集中期 (PCP)的空间分布与年际变化特征。结果表明:宁夏降水PCP与PCD空间分布特征明显,中北部PCP比南部山区偏早1候,PCD自北向南逐渐减小,北部1年中最大降水出现的时间变率较大,且出现极端降水的可能性比中南部大; 1961-2010年全区PCD与PCP呈微弱的下降趋势,但近20 a PCD明显增大,PCP显著推迟;PCD与PCP显著正相关,PCP出现得越晚,PCD集中度越高;各地的PCD与年降水量、汛期降水量以及年日最大降水量都有非常好的正相关性,正相关中心区位于北部的惠农、陶乐、中卫,中部的盐池、麻黄山和南部山区的大部,上述地区降水越集中,年降水量、汛期降水量以及年日最大降水量越大,导致洪涝灾害发生的可能性将越大;宁夏汛期降水多雨年各地降水更集中,且大降水中北部大部易出现得早,南部出现得晚;中高纬的北极涛动和低纬的南海季风对宁夏降水集中度有着显著的影响,北极涛动偏弱的年份,南海季风爆发偏早的年份,宁夏各地年降水比较集中。  相似文献   

8.
利用2008—2015年CMORPH卫星与自动观测站的逐时降水量融合产品,分析了陕西地区5~10月降水量、降水频次、降水强度的日变化特征,以及陕西南北降水日变化上的差异。结果表明:(1)降水量和降水频次从南向北明显递减,地形作用下的纬向变化是陕西地区降水最重要的特征,但降水强度呈现出南北高、中间低的分布特征,两个高值中心分别位于陕南南部和陕北的东北部,EOF分析表明陕西南部夜雨特征明显。(2)陕西南部降水量和降水频次、降水强度日变化特征一致,均以夜晚至次日清晨为高值区, 而在中午前后达到最低值。陕西北部降水量、降水频次峰值则主要出现在上午,降水强度峰值出现在傍晚。区域对比分析表明,陕西南部降水量日变化主要来自于降水强度的贡献,而陕西北部日变化以降水频次的贡献为主。(3)陕西降水的南北分界线特征明显,34 °N以南地区降水日变化明显且降水主要集中在夜间。34~37 °N之间的中部地区降水日变化较弱,37 °N以北地区降水的日变化特征和陕西南部相反。(4)除榆林、渭南和商洛东部地区外,其他大部分地方白天的降水量都明显低于夜间的降水量,特别是陕南秦巴山区夜间降水量超过白天的一倍以上。  相似文献   

9.
根据中国西北地区东部59个气象台站1965-2014年的逐日降水资料,将降水划分为小雨、中雨和大雨3个等级,分析和比较了该地区夏季不同等级降水降水量、降水日数和降水强度的时间演变特征,并对各等级降水对总降水贡献的时间变化进行了讨论。结果表明:(1)西北地区东部降水量和降水日集中在夏季。降水等级越高,降水量和降水日的集中程度越高,夏季大雨量(日)达到了全年大雨量(日)的72.15%(69.19%);(2)西北地区东部各等级降水量、降水日主要在1996年存在一个由多转少的突变,均存在较明显的2~3 a的短周期;(3)西北地区东部夏季降水总量与中雨等级以上降水量具有相似的年际和年代际变化,相关系数高达0.8,主要受中雨和大雨量的影响,仅在东南部和甘肃中部趋于增加,在甘肃南部和内蒙古中部趋于减少。总降水日则与小雨日变化一致,主要呈减少趋势,总降水强度的增强则主要源自大雨强度的增大。  相似文献   

10.
利用春夏季(3~8月)12个站降水资料以及冬季(12~02月)温度资料,通过统计方法选取新疆南部地区温度异常年份与春夏季降水异常年份,并进行相关分析,结果表明:暖冬年份对应的来年春夏季总降水量偏多;反之,冷冬年对应的春夏季降水总量偏少。再利用NCEP/NCAR1960-2000年全球月平均网格点资料分析500 hPa高度场环流特征,结果表明:暖冬年前期环流特征为西低东高型,冷冬年前期环流特征为西高东低型,具有反位相关系。暖冬年后期才为西高东低型,与冷冬年前期相较起点晚,从而影响到来年的环流入夏时间,这可能就是导致暖冬年份来年降水增多的原因之一。  相似文献   

11.
Kumtagh Desert is one of the eight biggest deserts in China, but poorly investigated before our interdisciplinary study because of the difficulty of access. In this paper, 33 representative surface sediment samples were collected from the Kumtagh Desert and analyzed in the laboratory to obtain heavy mineral components and geochemical element contents. Results show that various kinds of heavy minerals are present in these samples, with high levels of epidote and hornblende. Si and Al take up a large part of chemical composition. Compared with the average composition of geochemical elements of the upper continental crust (UCC), except Si and Ca, all elements are depleted to a certain degree; Fe, Mg, Ca, P, Ti and Mn have high correlation coefficients in their contents. The mineral and geochemical composition of the Kumtagh Desert sediments have a similarity with that of rocks of Altyn Tagh Mountains, and the surface sediments of the alluvial/diluvial fans around the Altyn Tagh Mountains and that of the Taklamakan Desert, indicating that one major source of the Kumtagh Desert sediments is located in the Altyn Tagh Mountains. Alluvial deposits and lake sediments in Aqik valley and lower reaches of Shule River are prone to be eroded and transported by the strong northeasterly wind into the Kumtagh Desert, forming another source of the desert deposits. An A-CN-K ternary diagram shows that a weak degree chemical weathering by the loss of Na and K occurred in these sediments, whereas A-CNK-FM ternary diagram suggests that Fe and Mg have undergone a significant chemical differentiation. Physical weathering processes cause easy erosion and enrichment in fine particles for mafic minerals, thus coarse desert sand particles can be relatively depleted in Fe and Mg. The mineral and geochemical composition of sediments in arid regions experiencing less chemical weathering are mostly affected by physical weathering.  相似文献   

12.
地质历史过程中全新世时期是一个温暖湿润的间冰期气候过程,中间出现过多次变冷或变干的快速气候事件。BL剖面位于库姆塔格沙漠东南缘,是一典型的风成砂黄土沉积地层,沉积厚度约350 cm。通过沉积地层光释光测年和沉积物粒度变化分析,结果显示:(1)BL剖面沉积的年代始于8.3 ka,处在全新世早期;(2)区域干旱气候条件下,反映冬季风的代用指标则以粗端组分含量为主,BL剖面沉积物平均粒度受到颗粒粗端的影响较大,对比3个不同粗颗粒组分含量所指示的古气候变化,选用>110 μm的沉积物颗粒组分含量作为冬季风研究的替代性指标,具有较好的指示意义;(3)剖面粒度对全新世中晚期的6次气候快速变化过程均有不同程度的记录,其特点是对全球性冷事件敏感性较强,对干旱事件响应较弱。对库姆塔格沙漠地区全新世气候过程的研究,可为极端干旱区域气候对全球气候变化过程的响应提供一定借鉴。  相似文献   

13.
祁连山作为我国西部重要生态安全屏障,是河西走廊内陆河流域核心水源区。通过测定2013年7月~2014年7月收集的降水样品中δ17O与δ17O值,分析了祁连山东部乌鞘岭大气降水中δ17O的特征,在此基础上对水汽来源进行了研究。结果表明:降水稳定同位素17O存在夏高冬低的变化特征;17O存在显著的温度效应而不存在降水量效应,17O与水汽压在干季呈现正相关关系。研究区大气降水的氧同位素降水线方程为:δ′17O = 0.509δ′17O -0.16,低于氧同位素全球降水线斜率;过量δ17O表现出夏低冬高的特点;综合分析氧同位素大气降水方程线和过量δ17O变化,发现该区域大气降水主要受局地水循环和大陆气团控制。祁连山东部地区主要受到西风和东南季风携带水汽影响,东南季风携带水汽对于祁连山东部的影响主要集中于夏季。研究可提高对祁连山区降水同位素演化的认知,为寒旱区同位素水文学的进一步研究奠定基础。  相似文献   

14.
库姆塔格沙漠地区土壤及分布特征   总被引:3,自引:1,他引:2  
库姆塔格沙漠是我国最后一个进行大型资源环境综合考察的沙漠。该区域土壤研究被列为国家科技部科技基础工作专项“库姆塔格沙漠综合科学考察”的9个科学考察专题之一。通过2007年和2008年两次秋季野外集中科考,得到的初步结论是:在土壤类型和分布特征方面,库姆塔格沙漠地区地带性土壤类型为棕漠土,土壤分布高度地带性显著,存在多种地带与非地带性土壤类型中微域组合。在土壤形成发育和演变方面,表现出土壤形成过程中的风蚀、沙化严重,常使许多土壤类型处于复幼过程;土壤盐分表聚明显;土壤形成发育和演变过程受水文过程主导;区域土壤普遍肥力低下。  相似文献   

15.
1961—2015年中国降水面积变化特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于中国0.5°×0.5°逐月与逐日降水量网格数据集,采用线性趋势、克里金插值(Kriging)、森斜率等方法,分析1961—2015年中国3个自然区的降水量和降水面积的变化特征。结果表明:(1) 中国1961—2015年年均和季节平均降水量呈现由东南沿海向西北内陆递减的空间分布特征,中国一半以上的地区年均和四季降水量呈增加趋势。(2) 日变化特征上,东部季风区、西北干旱区和青藏高寒区均以小雨和中雨为主,其日降水面积多年平均值分别为:1 112.75×103 km2、52.65×103 km2,1 380.57×103 km2、92.83×103 km2,1 253.9×103 km2、34.3×103 km2,暴雨和大暴雨占的面积较小;三个区域不同等级日降水面积年内变化均符合二次函数曲线,三个区小雨日平均降水面积年际变化均呈略微减少趋势,青藏高寒区和西北干旱区大雨、暴雨和大暴雨均呈略微增加趋势,大暴雨整体波动较大。(3) 季节变化特征上,三个区四季均以小雨为主,暴雨和大暴雨所占面积较少。春季和秋季三个区小雨降水面积均呈减少趋势,春季和夏季三个区暴雨降水面积均呈增加趋势,冬季三个区中雨和大雨降水面积呈增加趋势。(4) 东部季风区春季和秋季,西北干旱区年均和四季,青藏高寒区春季、秋季和冬季不同等级降水量对应的降水面积均符合负指数分布规律。km2  相似文献   

16.
基于格点数据的1961-2012年祁连山面雨量特征分析   总被引:1,自引:0,他引:1  
基于国家气象信息中心发布的全国0.5°×0.5°逐日降水量数据集和气象站点日降水量实测资料,利用主成分分析(PCA)和回归分析,研究了1961-2012年祁连山面雨量年际变化以及面雨量距平与干旱累计强度的关系。结果表明,该套格点数据能够很好地反映出祁连山及其周边区域降水的时空分布格局,山区降水量大于平原区降水量,山区东段降水量大于西段降水量。1961-2012年祁连山面雨量的多年平均值为724.9×108 m3,其中,春、夏、秋、冬的面雨量分别为118.9×108 m3、469.4×108 m3、122.5×108 m3、14.1×108 m3,夏季面雨量最大,占全年的64.76%。除春季外,其他季节面雨量都呈现逐年增加趋势,夏季增幅最大,平均每年增加1.7×108 m3。山区面雨量与祁连山及其周边区域的干湿程度表现出较好的相关性,干旱累计强度与面雨量表现出负相关性,山区面雨量较多时这一地区的干旱强度也较弱。  相似文献   

17.
祁连山中部树木年轮宽度与气候因子的响应关系及气候重建   总被引:33,自引:13,他引:20  
研究了祁连山中部不同海拔高度青海云杉的树轮宽度对气候因子的响应,重建了祁连山中部 230 a以来春季3~5月的降水和 170 a以来夏季6~8月的气温序列。结果分析发现,不同高度的云杉树轮生长对春季降水极为敏感,呈现显著正相关;对夏季气温的响应程度,各海拔高度却不相同,夏季气温对上、下限云杉生长有显著影响,但对于森林中部云杉作用并不明显,总体表现为负相关,夏季高温对树木生长不利。气候重建结果发现,祁连山中部的春季230 a以来经历了大幅度长阶段的干湿变化,存在明显的 69 a和 21a周期;170 a以来夏季气温变化频繁,存在明显的2~4a周期。目前,祁连山中部正处于相对干旱和温暖时期,呈现出向暖干方向发展的趋势。  相似文献   

18.
周平  刘智勇 《热带地理》2018,38(3):299-311
基于91个气象站观测值和大气环流模型CCSM3,对南岭同纬度典型区域的气候特征参数进行分析,并对未来不同区域的温度和降水进行预测,进一步探索净初级生产力对温度和降水的敏感性,并分析导致南岭同纬度带典型区域气候差异的可能原因。结果表明:1)南岭和同纬度其它区域呈现不同的干旱期和湿润期,撒哈拉沙漠、阿拉伯半岛沙漠和塔尔沙漠仅存在干旱期,墨西哥荒漠和南岭均存在湿润期,但两者湿润期出现的季节有差异。南岭在植物生长的春季和夏季雨热同期,而墨西哥荒漠雨水充沛的季节多在秋季。墨西哥除湿润期外,一年有两次干旱期,其中冬旱持续的时间较长。2)撒哈拉沙漠、阿拉伯半岛沙漠和塔尔沙漠的潜在蒸散、风速和日照百分率均高于墨西哥荒漠和南岭,但降水正好相反。墨西哥荒漠干季的水汽压与撒哈拉沙漠和阿拉伯半岛沙漠接近,低于该区域湿季及塔尔沙漠与南岭的值。3)在B1气候情景下,对2000―2099年5个阶段(每20年为一个阶段)与1981―2010年的温度和降水数据进行T-test检验发现,南岭同纬度5个典型区域的未来温度均呈极显著上升趋势(P<0.001),降水总体呈增加趋势,然而在不同阶段和区域也存在不同比例的显著减少和显著增加情况。4)通过比较5个区域是否存在温度或降水成为潜在生产力限制因子发现,南岭及同纬度的其它区域均为降水限制因子区域。其中,撒哈拉沙漠和阿拉伯半岛沙漠对降水的敏感性显著高于墨西哥荒漠、塔尔沙漠和南岭。5)南岭与同纬度其它区域气候迥异的原因除气候变化外,还包括海陆位置、人类活动干扰的强弱、地形地貌特征等因素。  相似文献   

19.
2000-2012年祁连山植被覆盖变化及其与气候因子的相关性   总被引:5,自引:1,他引:4  
研究祁连山地区植被覆盖变化及其与气候因子的响应关系对这一地区土地利用总体特征以及对区域及全球气候和环境变化都将产生深远的意义。利用2000-2012年美国国家航空航天局提供的MODIS NDVI数据并结合相应的气候资料,通过对逐像元信息的提取和分析,运用均值法、斜率分析法、相关分析法,研究了2000-2012年不同季节祁连山植被覆盖的时空变化及其与气候因子的相关性。结果表明:13 a来祁连山植被覆盖整体上呈增加趋势,其中春季植被改善最为明显,秋季次之;植被覆盖变化在不同季节都存在明显的空间差异;不同季节植被与气温、降水的时滞效应不尽相同;祁连山春季大部分地区NDVI与气温呈显著正相关,夏季NDVI与降水呈显著正相关,秋、冬季NDVI与降水、气温的相关性不明显。  相似文献   

20.
季节性河流是干旱区不同生态系间物种扩散交流的重要通道,也是维持干旱区生物多样性与生态系统稳定性的重要因子,但我国有关季节性河流水文生态学的研究一直相对滞后,且有关季节性河流水文长期动态的研究报道较少。以库姆塔格沙漠东南缘季节性河流-多坝沟为研究对象,利用自动水位计与人工调查相结合的方法,研究了洪沟内部的长期水文动态特征。研究显示:多坝沟洪水集中在6~9月份,降水是洪水的唯一驱动力。洪水频率、流量与降水季节、降水量、降水强度等因子密切相关。任何时间,单次降水量低于5 mm时,降水无法形成明显的洪水过程;春季单次降水低于16 mm或夏季单次降水低于10 mm时,最大洪水流量均不超过0.3 m3·s-1。在没有洪水发生时,春秋季节泉水径流量表现为陡涨缓落,而夏季呈现陡落缓涨。该研究不仅为干旱区季节性河流水文监测提供了可行有效的方法,同时为进一步研究库姆塔格沙漠周边的生态水文过程、水资源管理利用及植物生存演化提供了数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号